

Adding Decimals Simple Calculations

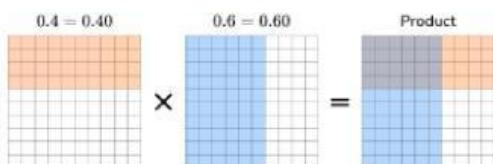
$2.5 + 2.6 =$	$3.8 + 9.9 =$	$4.7 + 1.3 =$
$4.7 + 0.3 =$	$5 + 4.2 + 0.11 =$	$4.7 + 1.4 =$
$5 + 0.7 =$	$6 + 0.15 + 0.6 =$	$5 + 6.02 + 0.3 =$

Subtracting Decimals Simple Calculations

$6.4 - 3.7 =$	$6.25 - 0.01 =$	$4.56 - 1.01 =$
$5.2 - 2.8 =$	$15.4 - 2.1 =$	$4.78 - 2.02 =$
$17.1 - 9.9 =$	$12.4 - 6.2 =$	$6.43 - 0.62 =$
$15.4 - 0.01$ Think $15.40 - 0.01$	$6.3 - 1.05$ Think $- 1.05$	$7.2 - 2.09$ Think $- 2.09$
$7 - 0.01$ Think $7.00 - 0.01$	$60 - 2.7$ Think $- 2.7$	$16 - 2.03$ Think $- 2.03$

When multiplying by decimals

Multiplying Decimals


Multiplying decimals is when you multiply numbers involving decimals.

Multiplying decimal numbers is very similar to multiplying multi-digit whole numbers.

Work out 0.4×0.6

Look at the overlapped shaded region.
That area represents the product.

The standard algorithm for multiplication also gets a result of 0.24.

$$\begin{array}{r}
 0.4 \quad \text{---} \quad 1 \text{ digit after decimal point} \\
 \times 0.6 \quad \text{---} \quad 1 \text{ digit after decimal point} \\
 \hline
 0.24 \quad \text{---} \quad \text{Total number of digits after decimal point (1 digit + 1 digit = 2 digits)}
 \end{array}$$

There are 24 squares in the overlap that are shaded.

Each square represents 0.01 (1 hundredth), so the product = 0.24

$$1.2 \times 1.2 = 1.44$$

Expression has 2 decimal places

Move the decimal back 2 places

Multiply by the whole

$$12 \times 12 = 144.$$

$$1.44$$

$12 \times 15 = 180$	$11 \times 12 = 180$
$1.2 \times 1.5 =$	$1.1 \times 1.2 =$
$12 \times 1.2 =$	$1.1 \times 0.12 =$
$1.3 \times 0.2 =$	$1.4 \times 0.5 =$
$2.1 \times 0.3 =$	$1.2 \times 0.03 =$
$4.3 \times 0.01 =$	$20.5 \times 0.02 =$
$24.2 \times 0.2 =$	$124.4 \times 0.02 =$

Dividing Decimals

To **divide decimals** we can treat the division like a fraction and find an equivalent fraction which has an integer denominator.

If we are dividing by an integer, we can use the short division method.

E.g.

$$\begin{array}{r} 0.124 \\ 6 \overline{)0.744} \\ \hline 0.744 \end{array}$$

$0.744 \div 6 = 0.124$

If we are dividing by a decimal, we can adjust the division problem to make the decimal an integer.

E.g.

$$\begin{array}{r} 8.75 \div 0.7 \\ \hline 8.75 \\ \hline 0.7 \end{array}$$

$\frac{8.75}{0.7} = \frac{87.5}{7}$

$\begin{array}{r} 12.5 \\ \hline 7 \overline{)87.5} \\ \hline 75 \\ \hline 25 \\ \hline 25 \\ \hline 0 \end{array}$

$2.4 \div 0.2$ is the same as $24 \div 2$

$\times 10 \qquad \qquad \times 10$

Multiply both parts of the expression $\times 10$ to change the divisor into an integer

$3 \times 5 = 15$	$5 \times 5 = 25$	$6 \times 5 = 30$	$7 \times 5 = 35$	$4 \times 4 = 16$	$6 \times 4 = 24$	$7 \times 4 = 28$	$8 \times 4 = 32$
$2.5 \div 0.5 =$	\div	$=$		$1.6 \div 0.04 =$	\div	$=$	
$1.5 \div 0.3 =$	\div	$=$		$2.8 \div 0.07 =$	\div	$=$	
$3.5 \div 0.7 =$	\div	$=$		$32 \div 0.08 =$	\div	$=$	
$1.5 \div 0.5 =$	\div	$=$		$24 \div 0.04 =$	\div	$=$	
$6 \div 0.5 =$	\div	$=$		$3.2 \div 0.03 =$	\div	$=$	