

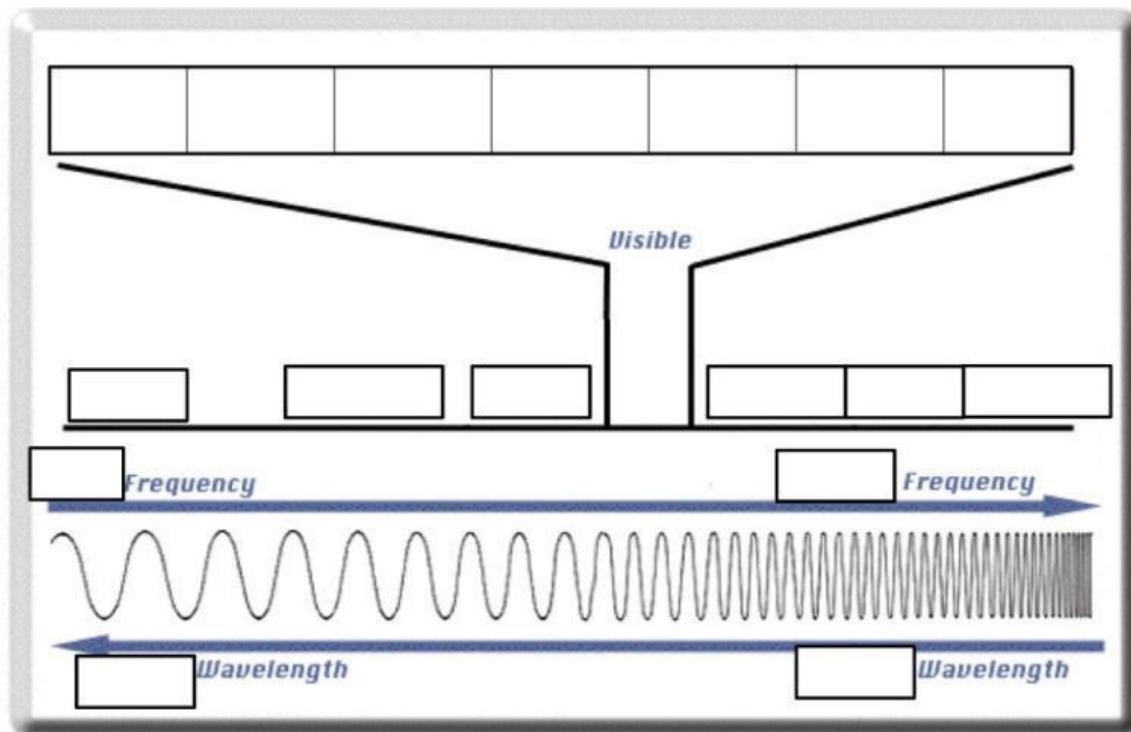
Learning Target: I can describe and explain the practical applications of different parts of the electromagnetic spectrum.

Practical Applications of the Electromagnetic Spectrum Interactive Activity

Objective:

Students will explore the practical applications of different parts of the electromagnetic spectrum through hands-on activities, critical thinking, and data analysis.

Materials Needed:


- Printed worksheets
- Images and diagrams of electromagnetic spectrum applications (e.g., X-rays, microwaves, infrared, etc.)
- Colored pencils or markers
- Chart paper or graph templates
- Example devices (optional, e.g., a remote control for infrared demonstration)

Part 1: The Electromagnetic Spectrum

1. Diagram Labeling Activity Below is an unlabeled diagram of the electromagnetic spectrum.

Label the following parts: (Radio waves, Microwaves, Infrared, Visible light colors, Ultraviolet, X-rays, Gamma rays, High, Low, Long, Short)

Use colored pencils to color-code the spectrum and write one key characteristic of each type of wave.

©Lori Maldonado@Syllabuy.co

Created By: Chivas & Jordan Spivey

Duplication of any part of this activity is prohibited by law.

Learning Target: I can describe and explain the practical applications of different parts of the electromagnetic spectrum.

Part 2: Practical Applications

2. Match the Wave to Its Use Draw lines to match each type of electromagnetic wave with its practical application:

Electromagnetic Wave	Practical Application
Radio waves	Medical imaging
Microwaves	Human vision
Infrared	Cancer treatment
Visible light	Communication in cell phones
Ultraviolet	Remote controls
X-rays	Heating food in a microwave
Gamma rays	Sterilizing medical equipment

Extension Question:

Why are gamma rays not safe for human exposure in high doses? Explain in 2-3 sentences. _____

Part 3: Data Analysis

3. Infrared and Temperature

Below is a chart showing temperatures of various objects detected using infrared imaging:

Object	Temperature (°C)
Human hand	34
Ice cube	-5
Cup of coffee	60
Car engine	75

Questions:

1. Which object has the highest temperature? _____
2. Which object emits the least infrared radiation? _____
3. What is the relationship between temperature and the amount of infrared radiation emitted? _____

Learning Target: I can describe and explain the practical applications of different parts of the electromagnetic spectrum.

Part 4: Critical Thinking

4. Everyday Scenarios

Imagine you are designing a device using one part of the electromagnetic spectrum. Write a short paragraph answering the following:

- Which part of the spectrum would you use?
- What is the purpose of your device?
- How does this part of the spectrum help achieve the device's purpose?

Short paragraph: _____

Part 5: Visual Activity

5. Diagram Identification Study the images below and identify which part of the electromagnetic spectrum is being used. Write your answers in the blank spaces provided.

Image 1: Doctor viewing image of knee bones

Image 2: Satellite communicating with Earth

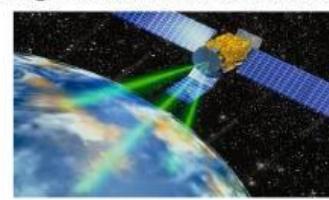
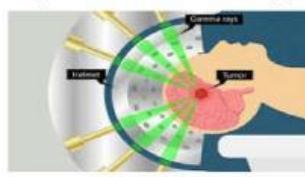



Image 3: A person using night vision goggles

Image 4: Radiation therapy to kill cancer cells

