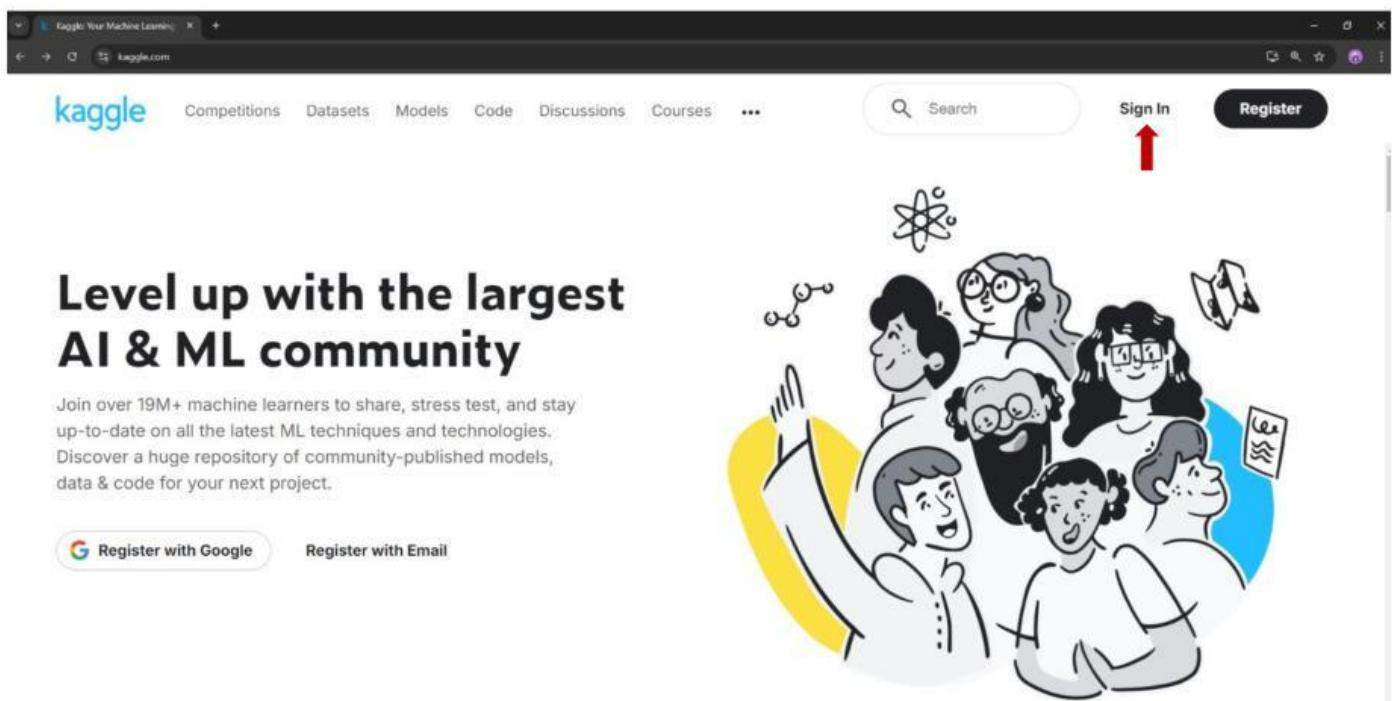


Project 164

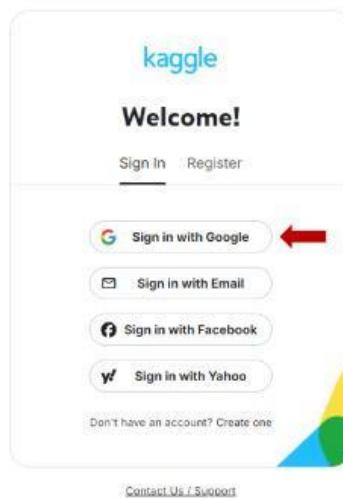
164

Coding School

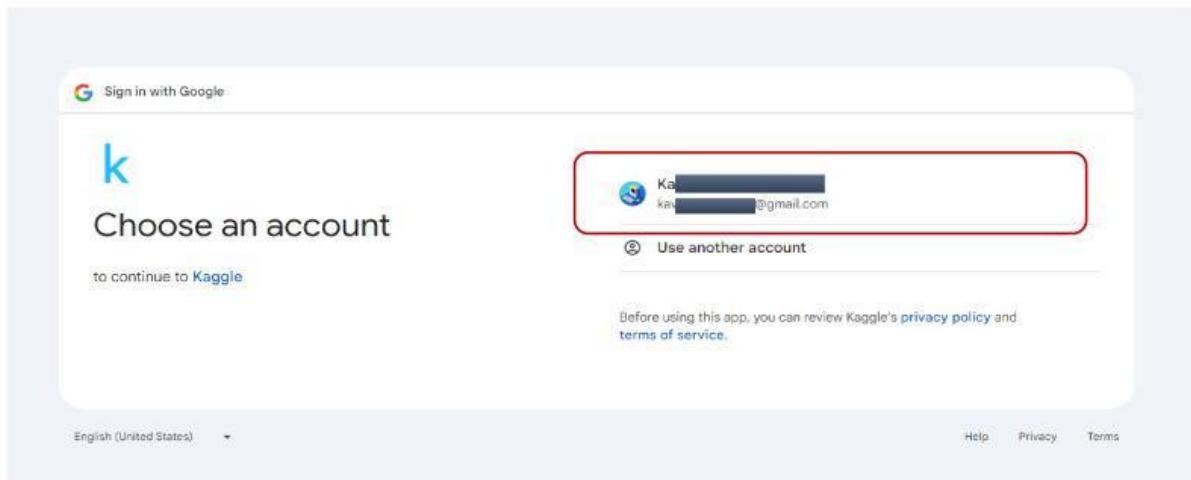
AI and Machine Learning

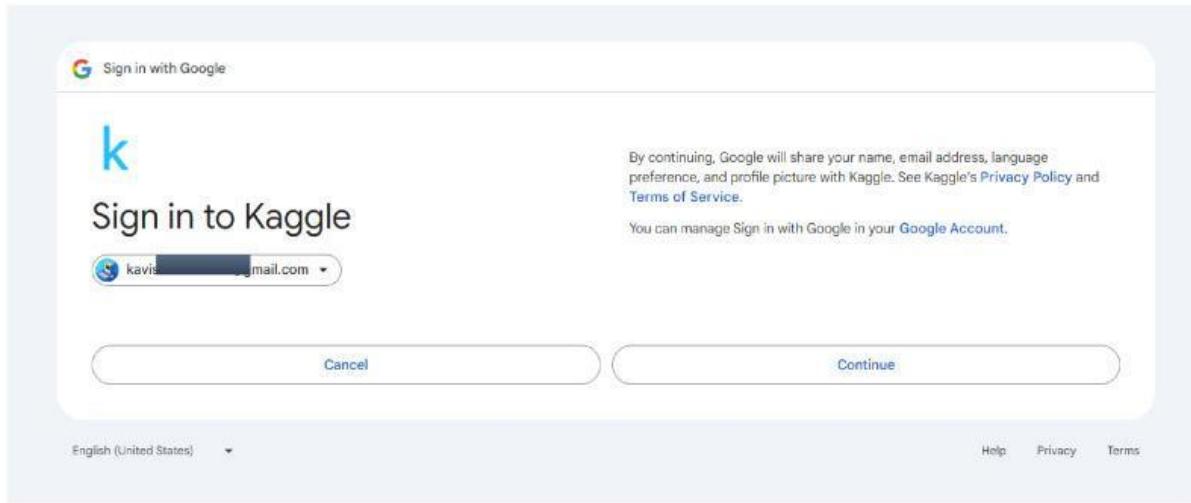


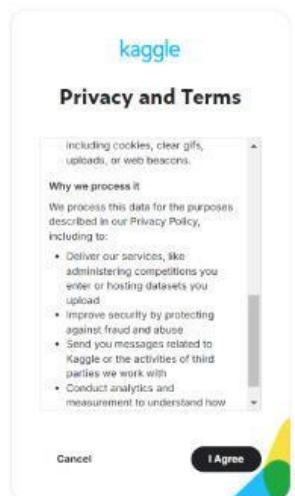
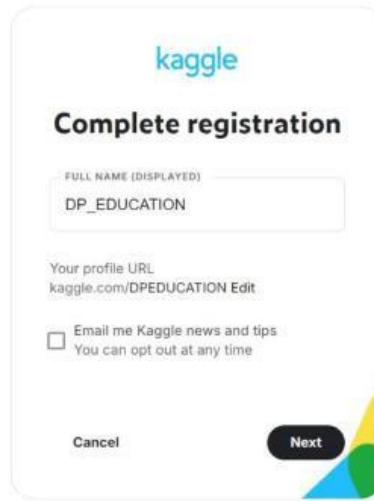
Start here

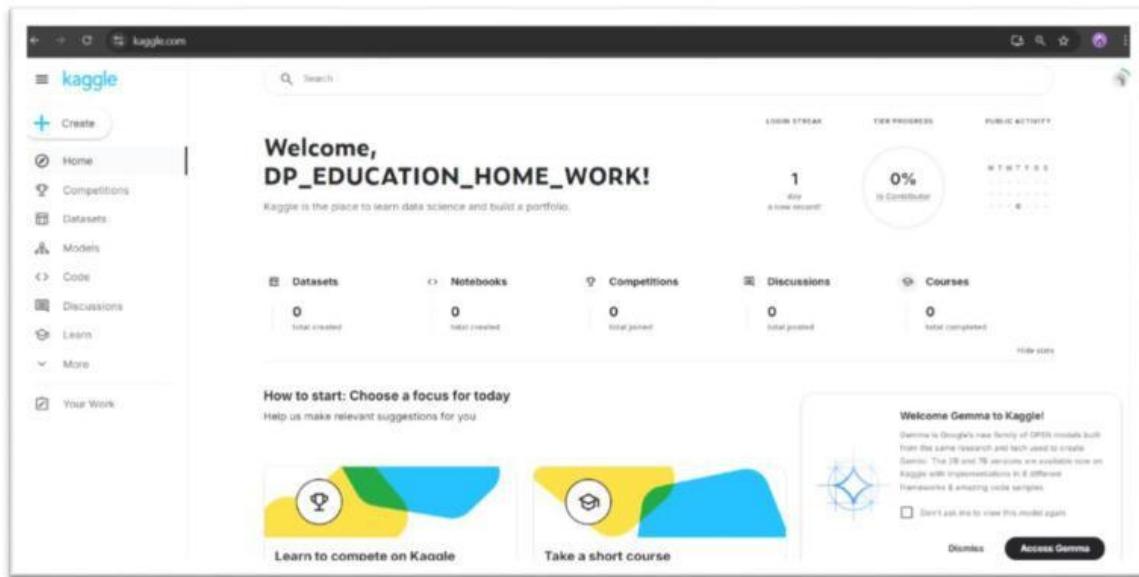

- ❖ Here we will see how to train our dataset using AI and machine learning lab in Code.org and create a mobile app using it.
- ❖ First find a dataset according to your requirement.
- ❖ Here, the Kaggle website is used to select a dataset, and thus a dataset can be obtained easily and for free. The link of that website is below.

<https://www.kaggle.com/>


- ❖ First of all, you have to sign in for that website. Click on the sign in button for that.

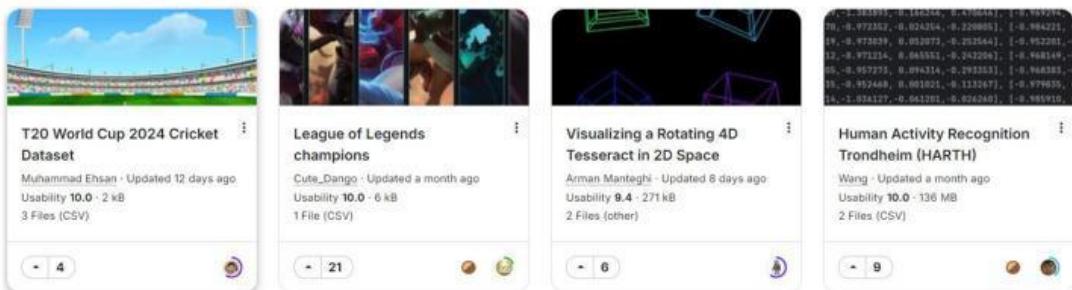

- ❖ Then a page like below will be loaded. Here we select Sign in with Google and sign in to the kaggle website.



❖ Now select your email and sign in.


❖ Now click on the continue button.

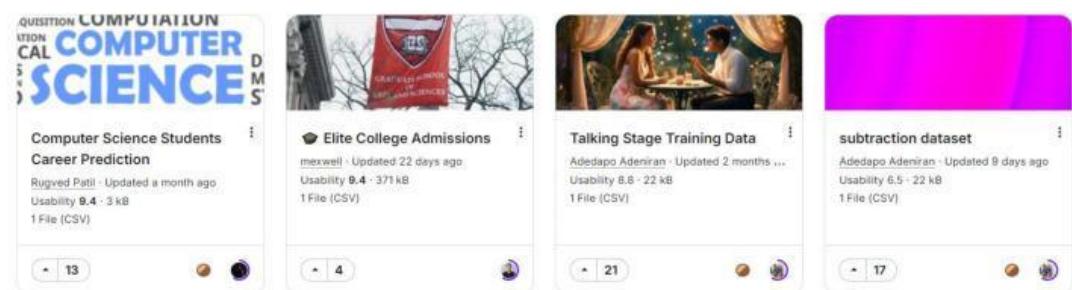
- ❖ Now provide a username for your account.

- ❖ That username should be unique username. That is, someone else should not have a username with that name.
- ❖ Now click on I Agree button and complete your account permanently.
- ❖ Then the account you created on the kaggle website will be displayed as follows.



- ❖ Now you can get the required dataset through this website.
- ❖ Now click on the Datasets tab in the side bar.

- ❖ Here you can get the dataset according to each topic.


↳ Games

See All

↳ Education

See All

↳ News

See All

- ❖ Each topic has a dataset as above. And when you click on see all, you can see more datasets related to that topic. You can find a dataset you need here.
- ❖ And you can use the required dataset by the search bar here.
- ❖ Let us search which dataset is related to Sri Lanka.
- ❖ You can also search according to the topic you want and download a dataset you want.

Datasets

+ New Dataset Your Work

Sri Lanka Filters

All datasets X Computer Science Education Classification Computer Vision NLP Data Visualization Pre-Trained Model

151 Datasets Hotness ▾

Dataset	Uploader	Updated	Usability	Files	Size	Rank	Category
Twitter Dataset: Sri Lanka Crisis	Vishesh Thakur	Updated 2 years ago	9.7	1 File (CSV)	2 MB	35	Silver
Sri Lanka Weather Dataset	Rasul	Updated 4 months ago	10.0	2 Files (CSV)	10 MB	28	Bronze
Sri Lanka vehicle number plates	Rohan Kumar	Updated 2 years ago	8.8	502 Files (other)	21 MB	14	Bronze
Destination Sri Lanka	Kanchana9990	Updated 4 months ago	9.4	1 File (CSV)	85 kB	24	Bronze
Sri Lankan Rupee Rhythms: 13-Year Forex Dance	Kanchana9990	Updated 9 months ago	10.0	1 File (CSV)	223 kB	49	Bronze
Economy of Sri Lanka	Amritha R J	Updated 2 years ago	9.4	1 File (CSV)	3 kB	33	Bronze

❖ Let's assume that we want to train a dataset related to dengue disease and prepare a model. For that, a dataset should be found first.

Datasets

+ New Dataset Your Work

Dengue Filters

All datasets X Computer Science Education Classification Computer Vision NLP Data Visualization Pre-Trained Model

68 Datasets Hotness ▾

Dataset	Uploader	Updated	Usability	Files	Size	Rank	Category
Philippines Dengue Cases 2016-2020	Jhen Vincent Gugp	Updated 2 years ago	10.0	1 File (CSV)	7 kB	45	Bronze
Dengue Dataset of Bangladesh	MD. Kawsar Ahmad	Updated 9 months ago	10.0	1 File (CSV)	7 kB	24	
Dengue Cases in the Philippines	François Paul Flores	Updated 2 years ago	8.2	1 File (CSV)	15 kB	87	Bronze
Dengue Prediction(Supervised)	Siddhika	Updated 4 years ago	8.2	1 File (CSV)	21 kB	24	Bronze
Dengue, Temperatura e Chuvas em Campinas-SP	Renan Gomes	Updated 6 years ago	8.8	1 File (CSV)	3 kB	30	Bronze
Dengue Fragments Frequency	TavololC	Updated 2 years ago	8.4	1 File (CSV)	11 MB	6	

- ❖ Then 68 datasets related to dengue are displayed on the kaggle website.
- ❖ Among those datasets, the Dengue Prediction (Supervised) dataset is selected. Now click on that label.

Dengue Prediction(Supervised)

Data Card | Code (2) | Discussion (0) | Suggestions (0)

About Dataset

This dataset contains number of dengue cases expected in a region depending on the weather data for that region. It can be expanded to use over other regions and for other diseases as well.

Usability: 8.24

License: CC0: Public Domain

Expected update frequency: Annually

Tags: Tabular, Health Conditions, Categorical, Weather and Climate, Diseases, Decision Tree

final.csv (83.17 kB)

Detail | Compact | Column

10 of 26 columns

Detail

Column

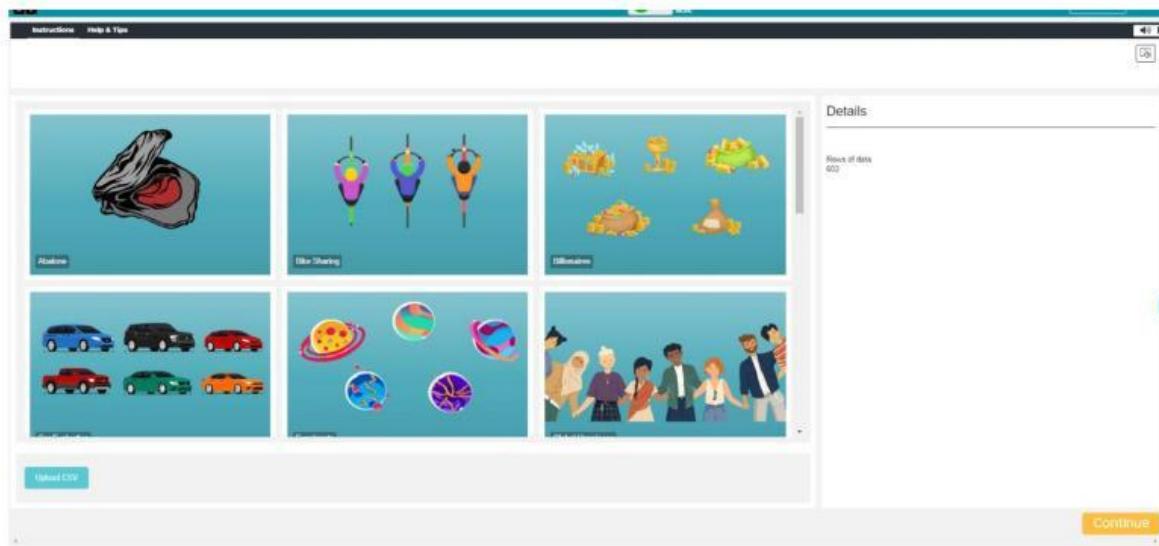
0 600 300 12.7 29.4 33.3 43.0 12.4

33.80812500025285 25.998487988487985 29.72784227942276 37.8798487984878 29.19049

Data Explorer
Version 1 (83.17 kB)

final.csv

- ❖ Now click on the Download button and download the dataset.
- ❖ Then a zip file will be downloaded. Extract that zip.
- ❖ Now go to AI and machine learning lab and upload that data set.


Do This: Choose a dataset that you would like to investigate.

Download

Open

final

- ❖ Now click on the Continue button.

- ❖ Then the dataset we downloaded has been imported into AI and machine learning lab as follows.

Predict Orange based on Blue												
Serial	tempmax	tempmin	temp	humiditymax	humiditymin	humidity	cloud	humidity	DPV100	DPV200	DPV300	DPV400
0	24.47802119178862	28.7888881388843	38.79788421817889	52.31788421817885	52.3888813888844	52.39712287171228	73.39821617888216	2.82172902788728	44.86754246			
1	34.088178881788825	25.8948884888843	28.48427474227423	41.3302118217882	28.14898848888454	34.42357222917238	23.49580284828846	72.08888888888888	5.17844624414647	38.03738673		
2	34.978887188874	25.478887188875	28.5826282628263	40.48422744277473	28.584916282628262	33.98398813888884	33.98847804780478	65.42074324828888	3.98888888888888	55.33333333333333		
3	33.62032320232023	25.88847804780478	28.7274427422742274	37.87848787888787	28.95488284888883	31.722327228728724	21.7238202528252821	68.20788878887874	6.025423232323232	37.386273863		
4	35.68887888788787	24.20884288888889	26.771981478147814	36.888881388888871	24.263146248484843	28.949828282828282	24.274634482484844	80.625225225225219	23.7008383838383834	95.74798747		
5	28.278677987478748	29.6912795121912	23.810888138888887	28.893884888888845	28.893884888888845	28.8951219121912	24.89587888788788	19.82784227242273	60.40288848888842	4.278888888888881	80.386286286286286	
6	32.949428162428162	26.1228772287728	28.484780478047804	32.878487878887887	32.878487878887887	32.274634482482482	31.893738373837388	9.349525252525252	46.341429429429429			
7	34.227388778877887744	26.52846286162861628	28.847024747874784	41.3021182118211822	28.377287722877228	34.9493281624281624	24.55572885288528854	74.819527278327886	9.959527278327886	54.475427475427475		
8	34.468971888718887185	23.847478474784784	28.78738402738402738	36.46341463414634	24.446284463246346	32.962479247924792	31.495828282828282	47.51463414634146	4.817888178881788	61.7888178881788		
9	36.78815588155881558815	23.888888888888883	28.3138213821382138	36.88773877387738774	23.888888888888883	28.114247482474824	24.888888888888888	82.3954385438543851	91.88881888888888			
10	31.8887884887884887884882	22.1617888788878877	26.3455284528452845	36.893884888888883	22.9617888788878877	26.2298428428428428	21.4888788878878876	76.7174471547154716	16.7298428428428428	73.887398397		
11	38.704788478847884788479	26.1471447144714471	28.3308330833083308	37.8248634284284284	27.4294524284284284	32.788878878878878874	24.941634482482482	82.071669788878875	25.888888888888883	70.87479747		
12	32.30232323232323232323	25.81788817888178879	28.2172317231723172	40.793881388888883	28.898888888888883	33.3471547154715472	25.482638263826382639	84.263888888888881	8.1175232323232323	50.88884865		
13	28.97333333333333333333	21.328888888888888888	24.8	36.383333333333333333	21.328888888888888888	25.28	18.313333333333333333	73.0333333333333333	14.2888888888888888			
14	28.97333333333333333333	17.738888888888888888	19.82	26.388888888888888885	17.328888888888888886	18.478888888888888885	6.46	46.333333333333333334	1.288888888888888888			
15	48.1	36.1	32.8	44.8	28.1	30.2	16.7	38.8	3.3			
16	41.2	28.4	23.2	43.1	28.4	25.9	16.8	47.8	52.8			
17	37.2	25.8	32.1	46.5	25.9	34.3	22.4	55.7	6.7			
18	37.2	24.8	38.7	41.8	24.8	33.8	23.1	87.8	46.1			
19	38.8	25.2	31.1	41.5	25.2	25.1	22.4	81.8	9.8			
20	37.8	25.1	36.4	42.1	25.1	31.9	25.8	68.8	16.8			
21	36.9	25.4	36.4	46.2	25.4	34.2	23.4	68.8	7.7			

- ❖ Now train the dataset as you want.