
E-LKPD BERBASIS ICARE

PERTEMUAN 3 "FAKTOR-FAKTOR YANG MEMPENGARUHI LAJU REAKSI"

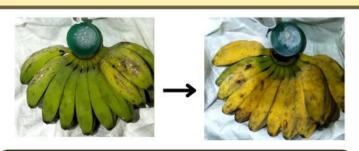
HARI/TANGGAL	:	
KELOMPOK	:	
KELAS		
ANGGOTA KELOM	РОК :	
1.		
2.		
3.		
4.		
5.		
6.		

M	АНА	SISI	NA	PEN	ELIT	ГІ:
	SHA	AVIR	A L	AZU	ВА	
	0					
_						-
RUJI	JKAN	I : NA	TAS	YA F	RAS	TIC

PETUNJUK UMUM

- 1. Pahamilah materi dan amatilah video pembelajaran yang terdapat pada E-LKPD.
- 2. Gunakan literatur atau sumber belajar lain yang mampu mendukung dalam pengerjaan E-LKPD ini.
- 3. Jawablah semua pertanyaan yang ada pada E-LKPD menggunakan gadget kelompokmu dengan benar, singkat, padat, dan jelas pada kolom yang telah disediakan.
- 4. Alokasi waktu pengerjaan E-LKPD ini adalah selama 45 menit.
- 5. Klik tombol FINISH jika telah selesai mengerjakan E-LKPD.

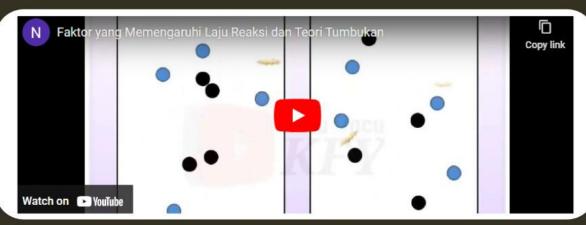
PETUNJUK PENGGUNAAN LIVEWORKSHEETS


- 1. Klik kotak jawaban untuk menjawab pertanyaan.
- 2. Klik tombol la untuk memutar video.
- 3. Klik tombol NEXT untuk lanjut ke tahapan selanjutnya.
- 4. Klik tombol auntuk kembali ke halaman awal E-LKPD.
- 5. Jika menggunakan *Handphone* (HP), ubah E-LKPD ke dalam tampilan situs desktop atau *desktop site* terlebih dahulu.
- 6. Klik tombol FINISH untuk mengirim jawaban. Kemudian, akan muncul kalimat EMAIL MY ANSWER TO MY TEACHER. Setelah itu masukkan nama kelompok anda pada kolom "enter your full name", "group/level" diisi dengan "Kelas XI", "school subject" diisi dengan "Kimia", dan setelah itu klik SEND.

PETUNJUK PENGGUNAAN E-LKPD

- 1. Introduction: Pada tahap ini peserta didik diberikan informasi mengenai tujuan dari pembelajaran dan gambaran materi secara umum.
- 2. Connection: Pada tahap ini peserta didik mengamati informasi yang diberikan.
- 3. Application: Pada tahap ini peserta didik mengaplikasikan bahan atau materi yang telah didapatkan dengan persoalan nyata yang terjadi dalam kehidupan sehari-hari atau dengan melakukan serangkaian percobaan.
- 4. Reflection: Pada tahap ini peserta didik berefleksi dan membuat kesimpulan mengenai materi yang telah dipelajari.
- 5. Extention: Pada tahap ini peserta didik secara individu menjawab beberapa pertanyaan dengan baik dan tepat yang berfungsi untuk memperkuat dan memperluas pengetahuan yang telah didapatkan pada tahap sebelumnya.

INTRODUCTION



Gambar 1. Pengaruh CaC_{2(s)} terhadap buah pisang

Tahukah kamu senyawa apakah CaC_{2(s)}? CaC_{2(s)} merupakan senyawa kimia yang dikenal dengan nama Kalsium Karbida atau Karbit. Ternyata pemberian karbit pada buah pisang berguna untuk mempercepat pematangan buah pisang. Peran karbit dalam hal ini adalah sebagai katalis. Buah pisang yang mentah biasanya matang dalam waktu 6 hari, namun dengan pemberian karbit buah pisang mengalami pematangan yang lebih cepat yaitu hanya dalam waktu 2 hari saja. Hal ini dapat terjadi karena diperolehnya gas asetilen dari karbit, sehingga pematangan buah berlangsung lebih cepat (Arti, 2018). Selain katalis, apa saja ya faktor-faktor yang memengaruhi laju reaksi? setelah mempelajari materi ini, kamu diharapkan dapat menjelaskan, melakukan, dan menyajikan hasil percobaan mengenai pengaruh konsentrasi, luas permukaan, suhu, dan katalis terhadap laju reaksi.

CONNECTION

Ingatkah kamu pada pertemuan sebelumnya kamu telah mempelajari materi mengenai teori tumbukan. Teori tumbukan adalah teori yang menjelaskan pengaruh faktor terhadap laju reaksi. Amatilah video berikut ini untuk menambah pemahamanmu mengenai faktor-faktor yang mempengaruhi laju reaksi dengan mengk-klik tombol

Link Youtube: https://youtu.be/1t3IXQYZcq4

Faktor Konsentrasi

Semakin besar konsentrasi pereaksi, maka akan semakin banyak jumlah partikelnya sehingga semakin besar pula peluang terjadinya tumbukan. Hal ini menyebabkan semakin besar peluang untuk terjadinya tumbukan efektif antar-partikel. Semakin banyak tumbukan efektif berarti laju reaksi semakin cepat. Semakin tinggi konsentrasi reaktan, semakin banyak jumlah partikel reaktan yang bertumbukan, sehingga semakin tinggi frekuensi terjadinya tumbukan dan lajunya meningkat.

Faktor Luas Permukaan

Semakin luas permukaan partikel, semakin besar peluang terjadinya tumbukan antar-pereaksi. Semakin banyak tumbukan yang terjadi mengakibatkan semakin besar peluang terjadinya tumbukan yang menghasilkan reaksi (tumbukan efektif). Akibatnya, laju reaksi semakin cepat.

Faktor Suhu

Pada suhu tinggi, partikel-partikel yang terdapat dalam suatu zat akan bergerak (bergetar) lebih cepat dibandingkan pada suhu rendah. Oleh karena itu, apabila terjadi kenaikan suhu, partikel-partikel akan bergerak lebih cepat sehingga energi kinetik partikel meningkat. Semakin tinggi energi kinetik partikel yang bergerak, jika saling bertabrakan akan menghasilkan energi yang tinggi pula sehingga semakin besar peluang terjadinya tumbukan yang dapat menghasilkan reaksi atau tumbukan efektif.

Faktor Katalis

Energi aktivasi merupakan energi minimal yang diperlukan untuk berlangsungnya suatu reaksi. Tiap reaksi mempunyai energi aktivasi yang berbeda-beda. Jika energi aktivasi suatu reaksi rendah, maka reaksi tersebut akan lebih mudah terjadi. Semakin rendah energi aktivasi, maka semakin mudah reaksi berlangsung. Beberapa reaksi yang sukar berlangsung disebabkan oleh tingginya energi aktivasi. Oleh karena itu, ditambahkan katalis agar reaksi lebih mudah berlangsung.

APPLICATION

AYO BEREKSPERIMEN!!!

I. Tujuan Percobaan

Untuk menentukan pengaruh konsentrasi, luas permukaan, suhu, dan katalis terhadap laju reaksi.

II. Alat dan Bahan

Alat dan Bahan	Ukuran	Jumlah
Gelas Kimia	50 mL	5 Buah
Gelas Ukur	25 mL	2 Buah
Erlenmeyer	50 mL	2 mL
Pembakar Spiritus	_	1 Buah
Kaki Tiga dan Kasa	<u>-</u>	1 Buah
Pipet Tetes	_	2 Buah
Tabung Reaksi	Sedang	5 Buah
Rak Tabung Reaksi	-	1 Buah
Stopwatch	-	1 Buah
Termometer	-	1 Buah
Alu dan Mortar	-	1 Buah
Batu Kapur (CaCO ₃)	Bongkahan	± 20 Gram
Larutan HCI	1 M	100 mL
	2 M	30 mL
Larutan Na ₂ S ₂ O ₃	1 M	250 mL
Larutan H ₂ C ₂ O ₄	1 M	25 mL
Larutan H ₂ SO ₄	1 M	5 mL
Larutan KMnO ₄	1 M	10 mL
Larutan MnSO ₄	1 M	3 mL

III. Cara Kerja

A. Konsentrasi

- Siapkan 2 tabung reaksi, kemudian isi tabung reaksi pertama dengan 7 mL larutan HCL 1 M dan 7 mL larutan HCl 2 M pada tabung reaksi kedua.
- Siapkan dua bongkahan batu kapur yang beratnya sama. Masukkan bongkahan pertama pada tabung reaksi yang berisi 7 mL larutan HCl 1 M dan bongkahan kedua pada tabung reaksi yang berisi 7 mL larutan HCl 2 M.
- Amati gelembung-gelembung gas yang terjadi.
- Bandingkan laju terbentuknya gas pada tabung pertama dan tabung kedua dengan menggunakan Stopwatch.

B. Luas Permukaan

- Siapkan 2 tabung reaksi, kemudian isi setiap tabung dengan 7 mL larutan HCl 1 M.
- Siapkan 2 bongkahan batu kapur yang beratnya sama. Haluskan salah satu bongkahan dengan menggunakan alu dan mortar dan biarkan yang satunya dalam bentuk bongkahan.
- Masukkan bongkahan batu kapur ke dalam tabung reaksi pertama dan bongkahan batu kapur yang telah dihaluskan ke dalam tabung reaksi kedua. Lakukan secara bersamaan.
- Amati gelembung gas yang terbentuk.
- Bandingkan laju terbentuknya gelembung gas pada tabung reaksi pertama dan tabung reaksi kedua dengan menggunakan Stopwatch.

C. Suhu

- Buatlah tanda silang pada selembar kertas.
- Masukkan 100 mL Na₂S₂O₃ 1 M ke dalam gelas kimia I, ukur suhunya menggunakan Termometer, dan catat hasilnya. Tempatkan gelas kimia di atas tandang silang yang telah dibuat.
- Tambahkan 10 mL larutan HCl 1 M pada gelas kimia I, kemudian catat waktu sejak penambahan sampai tanda silang tidak terlihat dari atas larutan.
- Masukkan 100 mL larutan Na₂S₂O₃ 1 M pada gelas kimia II dan panaskan hingga suhunya naik 10°C di atas suhu larutan yang pertama dengan menggunakan pembakar spiritus. Tempatkan di atas tanda silang, kemudian tambahkan 10 mL larutan HCl 1 M. Catat waktu sejak penambahan sampai tanda silang tidak terlihat lagi dari atas larutan.

D. Katalis

- Tempatkan dua erlenmeyer di atas kertas putih.
- Masukkan masing-masing 10 mL larutan H₂C₂O₄ ke dalam dua erlenmeyer secara terpisah, kemudian beri label A dan B pada masing-masing erlenmeyer.
- Tambahkan 2 mL larutan H₂SO₄ dan 4 mL larutan KMnO₄ke dalam erlenmeyer A.
- · Aduk rata sambil hitung dan catat lama waktu perubahan warna menggunakan Stopwatch.
- Tambahkan 2 mL larutan H₂SO₄, 4 mL larutan KMnO₄, dan 1 mL larutan MnSO₄ ke dalam erlenmeyer B.
- Aduk rata sambil hitung dan catat lama waktu perubahan warna menggunakan Stopwatch.

Setelah kamu selesai melakukan percobaan, jangan lupa untuk mencuci dan membersihkan kembali alat dan bahan yang telah digunakan ya!

IV. Tabel Hasil Pengamatan

Tabel 1. Tabel Hasil Pengamatan Faktor-faktor yang Memengaruhi Laju Reaksi

A. Konsentrasi

Tabung Reaksi	Larutan HCl	t (s)
1	7 mL HCl 1 M	
2	7 mL HCl 2 M	

Mengapa laju pembentukan gelembung gas pada tabung kedua lebih cepat dibandingkan pada tabung pertama? Tuliskan reaksi yang terjadi!

Jawaban:

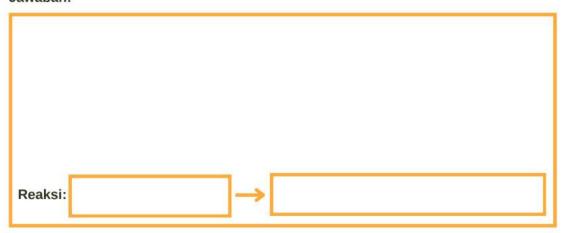
Reaksi :	\rightarrow	

B. Luas Permukaan

Bentuk Batu Kapur (CaCO₃)	t (s)
Bongkahan	
Serbuk	

Mengapa laju pembentukan gelembung gas pada tabung kedua lebih cepat dibandingkan pada tabung pertama?

Jawaban:



-	CI	hii
U.	Su	пu

Gelas Kimia	Suhu (⁰C)	Volume Na ₂ S ₂ O ₃ (mL)	Volume HCI (mL)	t (s)
1				
2				

Bagaimana pengaruh suhu terhadap laju reaksi pada kedua gelas kimia tersebut? Jelaskan! Dan tuliskan reaksi yang terjadi!

Jawaban:

D. Katalis

Erlenmeyer	Larutan	t (s)
1	$H_2C_2O_4 + H_2SO_4 + KMnO_4$	
2	$H_2C_2O_4 + H_2SO_4 + KMnO_4 + MnSO_4$	

Jelaskan laju reaksi dari yang paling cepat ke yang paling lambat! Bagaimana peran MnSO₄ dalam percobaan tersebut?

Jawaban:

berdasa	rkan percoba	sing pengaruh an yang telah d	or yang	mempengaruhi	laju rea
Jawaba	n:				
1					
1					
1					
1					
1					
1					
1					
1					
1					
1					
1					
1					
1					
1					
1					

REFLECTION

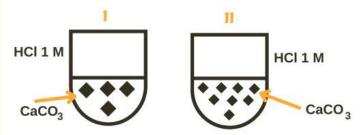
AYO MEMBUAT KESIMPULAN!

AYO MENYIMPULKAN!

- *Kamu dapat mengetik pertanyaan apabila masih ada materi yang kurang dipahami pada kolom yang disediakan.
- *Apabila kamu sudah paham, buatlah kesimpulan mengenai pembelajaran hari ini pada kolom yang tersedia!

Faktor-faktor yang memengaruhi laju reaksi
Semakin besar konsentrasi reaktan, maka laju reaksi akan semakin
Semakin kecil luas permukaan bidang sentuh zat yang bereaksi, maka laju reaksi
akan semakin , semakin tinggi suhu reaksi makan laju reaksi akan
semakin , pengaruh katalis terhadap laju reaksi adalah untuk

Untuk memperkuat dan memperluas pengetahuan yang telah kamu dapatkan, jawablah pertanyaan berikut secara inividu dengan mengklik tombol 🛂 berikut!


Nilai	Catatan	Paraf Guru

EXTENTION

NAMA	:	-
KELAS	:	
ASAL SEKOLA	1:	

Untuk memperkuat dan memperluas pengetahuan yang kamu dapatkan, jawablah pertanyaan berikut!

 Jika massa CaCO₃ dan konsentrasi HCl yang direaksikan adalah sama, jelaskan faktor yang memengaruhi laju reaksinya!
 Jawaban:

2. Perhatikan data reaksi berikut!

Percobaan	Bentuk Seng	[HCI]	Suhu (∘C)
1	Serbuk	0,1 M	35
2	Serbuk	0,1 M	45
3	Bongkahan	0,2 M	25
4	Serbuk	0,2 M	45
5	Bongkahan	0,2 M	45

Berdasarkan data pada tabel tersebut, urutkanlah percobaan yang menunjukkan laju reaksi dari yang paling lambat ke laju reaksi yang paling cepat! Jawaban:

3. Sekelompok peserta didik melakukan percobaan reaksi penguraian hidrogen peroksida dan didapatkan hasil percobaan seperti pada tabel berikut:

$$2H_2O_{2(aq)} \rightarrow 2H_2O_{(I)} + O_{2(g)}$$

Pereaksi	Pengamatan		
H ₂ O ₂ + K-Na tartrat	Gelembung gas tidak terlihat		
H ₂ O ₂ + K-Na tartrat + CoCl ₂	Terbentuk gelembung gas dan warna larutan berubah dari merah menjadi cokelat kehijauan dan kembali menjadi warna merah		
H ₂ O ₂ + NaCl	Gelembung gas tidak terlihat		
H ₂ O ₂ + FeCl ₂	Terbentuk gelembung gas yang mula-mula sedikit kemudian semakin banyak		

Berdasarkan percobaan tersebut, pernyatan yang benar tentang katalis adalah....

- a. CoCl₂ berfungsi sebagai katalis karena memengaruhi hasil reaksi
- b. K-Na Tartrat dan NaCl bertindak sebagai inhibitor
- c. CoCl2 bertindak sebagai katalis dan tidak memengaruhi hasil reaksi
- d. CoCl₂ bertindak sebagai katalis karena dapat mengubah warna larutan
- e. FeCl₂ bertindak sebagai inhibitor