

7TH Grade Math EXIT TEST – Part 2

WORD PROBLEMS

Subtraction Word Problems

1. A museum had 710 paintings. After they got rid of some, they had 488 left. How many paintings did they get rid of? $\underline{\quad} - \underline{\quad} = \underline{\quad}$

2. A store had 800 sodas. After a sale they had 365 left. How many did they sell?

$$\underline{\quad} - \underline{\quad} = \underline{\quad}$$

Addition Word Problems

1. Oliver bought some cupcakes for a party. During the party 900 were eaten. Now he has 175. How many cupcakes did Oliver get for the party? $\underline{\quad} + \underline{\quad} = \underline{\quad}$

2. At a bus stop 108 people got off the bus. Now there were 15 people on the bus. How many people were on the bus before? $\underline{\quad} + \underline{\quad} = \underline{\quad}$

Multiplication Word Problems

1. There are 8 birds perched on the branches of a tree. How many feet are there on the branches? $\underline{\quad} \times \underline{\quad} = \underline{\quad}$

2. There are 9 butterflies in a cage. Each butterfly has 6 **black** dots and 5 **yellow** dots. How many **black** dots are there in all? $\underline{\quad} \times \underline{\quad} = \underline{\quad}$

Division Word Problems

1. Mia had 40 pencils. She divided them into groups of 4. How many groups did she put them into? What division fact helped you know this? $\underline{\quad} \div \underline{\quad} = \underline{\quad}$

2. The Pancake Restaurant served 32 pancakes. If 8 customers ate an equal number of pancakes, how many did each person eat? $\underline{\quad} \div \underline{\quad} = \underline{\quad}$

Word Problems Using Percentages: (Must include dollar signs and other measurements)

1. Decrease \$500 by 30% $\underline{\quad}$

2. Increase 4 km by 28% $\underline{\quad}$

3. Simon bought a radio for \$420 and sold it for a 12% profit.
How much did he sell it for? $\underline{\quad}$

EXPRESSION & EQUATIONS

One Step Equations

One Step Addition Example
The Opposite of Addition is Subtraction

$$y + 14 = 20$$

$$-14 \quad -14$$

$$y \quad = 6 \checkmark$$

The value which makes the equation true is 6.

ONE STEP SUBTRACTION EXAMPLE
The Opposite of Subtraction is Addition

$$x - 120 = 80$$

$$+120 \quad +120$$

$$x \quad = 200 \checkmark$$

The value which makes the equation true is 200.

Multiplication Example
The Opposite of Multiplication is Division

$$3n = 12$$

$$\frac{3n}{3} = \frac{12}{3}$$

$$n = 4 \checkmark$$

3/3 cancels down to become 1/1 = 1
n is simply "n"

The value which makes the equation true is 4.

One Step Division Example
The Opposite of Division is Multiplication

$$\frac{k}{2} = 16$$

$$\frac{k}{2} \times \frac{2}{2} = 16 \times 2$$

$$k = 32 \checkmark$$

k is divided by 2, so we need to multiply both sides by 2
2/2 cancels down to become 1/1 = 1
k is simply "k"

The value which makes the equation true is 32.

1. $a + 4 = 10$ $a = \boxed{\quad}$
2. $f - 7 = 13$ $f = \boxed{\quad}$
3. $5j = 25$ $j = \boxed{\quad}$
4. $\frac{p}{2} = 4$ $p = \boxed{\quad}$

Simplifying Addition & Subtraction Expressions

1. $10k - 6k = \underline{\quad}$
2. $7b - 3b = \underline{\quad}$
3. $5c + 4c = \underline{\quad}$
4. $9f + 2f = \underline{\quad}$

Simplifying Multiplication & Division Expressions

1. $2x + 4$ Let $x = 8$ $\underline{\quad}$

2. $7n + 2r - 9$ Let $n = 3$ and $r = -3$ $\underline{\quad}$

Multi-Step Equations

distribute - clear parentheses

combine like terms - either side of the equation should only have "unlike" terms

isolate the variable term - add or subtract the constant term

$$\begin{array}{r}
 11x + 4 = 48 \\
 -4 \quad -4 \\
 \hline
 11x = 44 \\
 \frac{11x}{11} = \frac{44}{11} \\
 x = 4
 \end{array}
 \quad
 \begin{array}{r}
 11(4) + 4 = 48 \\
 44 + 4 = 48 \\
 48 = 48 \checkmark
 \end{array}$$

1. $5g + 2 - g = 22$
 $5g - 1g = \underline{\quad} g$
 $\underline{\quad} g + 2 = 22$
 $4 \times \underline{\quad} = 20$
 $\underline{\quad} + 2 = 22$
 $g = \underline{\quad}$
2. $6y + 4 - 3y = 13$
 $6y - 3y = \underline{\quad} y$
 $3y + 4 = 13$
 $3 \times \underline{\quad} = \underline{\quad}$
 $9 + \underline{\quad} = 13$
 $y = \underline{\quad}$

Inverse Operations

since $1 + 3 = 4$
then $4 - 1 = \boxed{}$

since $9 + 2 = 11$
then $11 - 9 = \boxed{}$

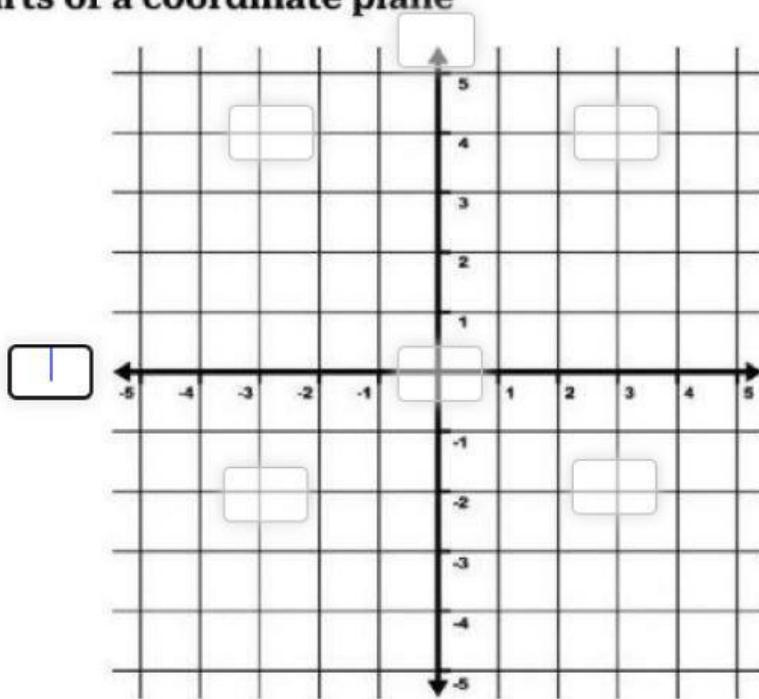
since $3 + 5 = 8$
then $8 - 3 = \boxed{}$

since $2 + 3 = 5$
then $5 - 2 = \boxed{}$

since $7 + 7 = 14$
then $14 - 7 = \boxed{}$

since $3 + 9 = 12$
then $12 - 3 = \boxed{}$

GRAPHING & LINEAR EQUATIONS

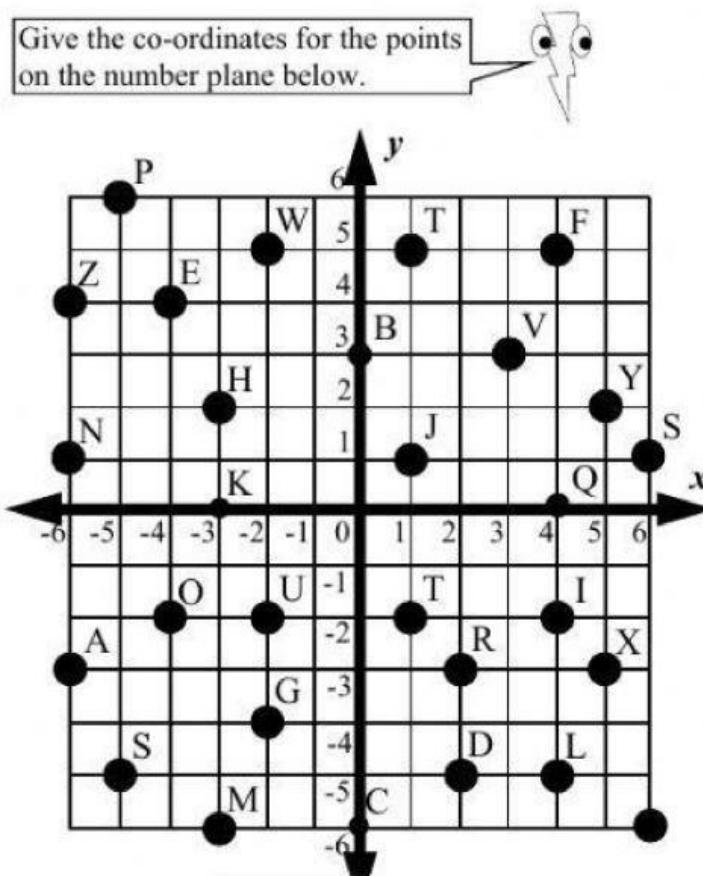

Cartesian Coordinate System (Coordinate Plane)

Hint: Label each section with the correct X, Y axis, or the number I, II, III, IV

Parts of a coordinate plane

Label the:

1. X-axis
2. Y-axis
3. Origin
4. Quadrant I
5. Quadrant II
6. Quadrant III
7. Quadrant IV



Plotting Points

Hint: Axis **X** is the 1st coordinate and Axis **Y** is the 2nd coordinate.

Answers must be written in this format: (2, -4) or (1, 5)

Give the co-ordinates for the points on the number plane below.

1 Point A

2 Point B

3 Point C

4 Point D

5 Point E

6 Point F

Linear Equations

1. $X + 5 = 12$

$$X = \underline{\hspace{2cm}} - \underline{\hspace{2cm}}$$

$$X = \underline{\hspace{2cm}}$$

2. $Y - 3 = 15$

$$Y = \underline{\hspace{2cm}} + \underline{\hspace{2cm}}$$

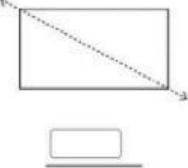
$$Y = \underline{\hspace{2cm}}$$

3. $6 + H = 9$

$$H = \underline{\hspace{2cm}} - \underline{\hspace{2cm}}$$

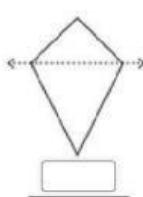
$$H = \underline{\hspace{2cm}}$$

LINES AND TRIANGLES


Lines of Symmetry

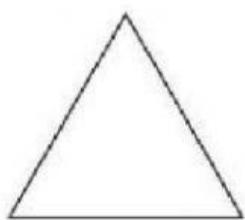
Is the dotted line on each shape a line of symmetry? Write yes or no.

1)

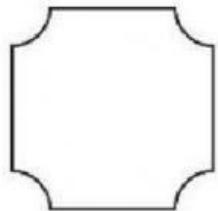

2)

3)

4)


Rotational Symmetry

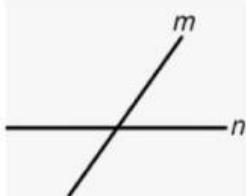
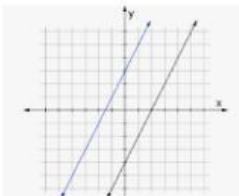
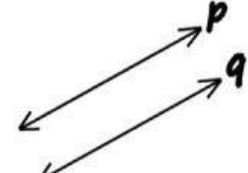
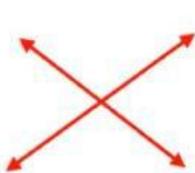
Find the order of rotational symmetry in the following shapes:


1.

2.

3.

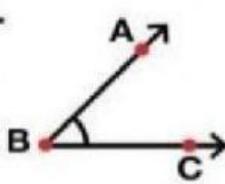
- a) 4
- b) 5
- c) 2
- d) 3

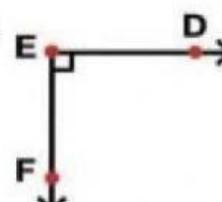




- a) 1
- b) 4
- c) 3
- d) 2

- a) 3
- b) 2
- c) 5
- d) 4

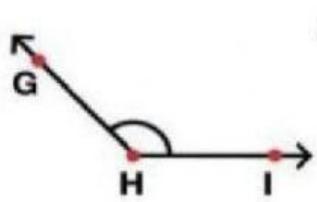
Parallel Lines

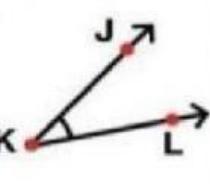
Write Yes if the diagrams below show parallel lines or No if they do not


- Parallel lines do not meet.
- The distance between parallel lines is always the same.


Types of Angles

Label each angle as acute, obtuse, or right.


1.


2.

3.

4.

