Catatan Mekanika Kuantum 1
Potensial Tangga, Potensial Sumur, Potensial Penghalang, Efek Terobosan

Acuan utama Gasiorowicz, Quantum Physics Ed. 3, Bab 4, Subbab 1 - 4

Sebelum ini kita telah menerapkan mekanika kuantum untuk menganalisis partikel dalam kotak.
Kasus partikel dalam kotak merupakan kasus yang paling sederhana, karena di dalam kotak
tidak ada interaksi, V(x) = 0. Kini, kita lihat kasus dengan potensial tidak nol, dengan bentuk
potensial yang dipakai masih tetap yang sederhana. Meskipun sederhana, banyak hal-hal dasar

yvang dapat kita pelajari mengenai mekanika kuantum.

A. Potensial tangga

Potensial tangga diberikan sebagai berikut:

g x| , (z < 0)
"{”_{1@ C(e>0) W

Di sini kita anggap partikel mula-mula datang dari kiri (z7) menuju ke kanan (27). Kita
lihat ada dua daerah dengan potensial berbeda, bidang batas kedua daerah tersebut ada di
titik # = (. Dua daerah dengan interaksi berbeda tersebut dapat dilihat sebagai dua medinm
atau dua lingkungan berbeda. Jadi, dibayangkan partikel datang dari medium / lingkungan
pertama ke medium / lingkungan kedua. Kita mulai dengan persamaan Schrédinger:

R

2m dr?

u(z) + V(z)ulz) = Eulz), (2)

yvang kita ubah menjadi persamaan differensial:
d? 2m|E — V(z)]

@u{u’:] =

u(x) =0. (3)

Perhatikan bahwa energi total E tetap sama, baik di daerah 1 (z < 0) maupun di daerah 2
{ae5%.0)

e Daerah 1 (z < 0):

d? 2mkE
d.:?u] (LI.'} ok ?ih (JI-‘) =0
d? 2mE
gid o uy (x) + k*uy(z) = 0, (1:2 - ) (4)
— uy(z) = € 4 R~k (5)
1
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Solusi u (x) menunjukkan superposisi 2 gelombang. Ini bukan sekedar merupakan solusi
umum persamaan (4) secara matematis, namun secara fisis merepresentasikan partikel
bergerak ke kanan (suku pertama) dan partikel bergerak ke kiri (suku kedua). Bagaimana
bisa ada partikel bergerak ke kiri, ini dapat dipahami mengingat sifat gelombang, yaitu
apabila bertemu medium berbeda ada sebagian vang dipantulkan; I disebut amplitudo

refleksi. Turunan pertama u;(x) dan fluks peluang j,(x) diperoleh sebagai berikut:

%ul(x} =L (eikx s R{,—;‘k;r) o
@) = = 1R, (7)

Fluks j;(x) menunjukkan arus partikel ke kanan dan arus partikel ke kiri.

Daerah 2 (z > 0):

d? 2m(E — V;
@’ug(i’) + %ugfﬁ?} =10
% i ¥ 2"”’1 E - lff
— wﬂg(ﬂf) + ¢ug(z) = 0, (qz = —(-ﬁz—a-)-) (8)
— ug(x) = Te'?", (9)

Solusi we(x) merepresentasikan hanya partikel yang bergerak ke kanan, tidak ada partikel
bergerak ke kiri. Ini dapat dipahami mengingat di daerah 2 gelombang tidak bhertemu
medium lain lagi, sehingga tidak ada gelombang vang dipantulkan di daerah 2. Partikel
di daerah 2 berasal dari daerah 1; 7" disebut amplitudo transmisi. Turunan pertama us ()

dan fluks peluang js(x) diperoleh sebagai berikut:

d -
E’U,Q[I‘) = iqTe'" (10)
: ha .o
Y =S| i}
nla) =y, (1)

Fluks js(x) menunjukkan arus partikel ke kanan.

Kita tinjau di bidang batas 2 daerah (x = 0). Sesuai syvarat kontinyu:

TL](D} = 'I.EQ(O) =14+ R=T (12}
%ul(mﬂr:n = d(—iug(:r)h,:g — k(1 — R) = qT (13)
31(0) = j2(0) = k(1 — |R*) = ¢|T|>. (14)

Persamaan (14) bermakna bahwa tidak ada partikel yang hilang atau bertambah, bahwa

arus bersih (nett) partikel di semua daerah sama, bahwa fluks tetap.
Dari persamaan (12) dan (13) diperoleh:

k— 2k
B="—2  dam T'= —‘E', (15)
k+q k+q

ueLIVEWORKSHEETS



sehingga diperoleh fluks:

L7 : o 2 )
L R|2=@ (k q) dan h—qT

o hk 4kq
m m \k+q T m (k+q)?’

(16)

vang sesual dengan persamaan (14).

Beberapa catatan:

e Kita lihat perbedaan tinjanan fisika klasik dan tinjanan mekanika kuantum. Menurut
fisika klasik jika partikel bergerak masuk ke lingkungan dengan energi potensial lebih
besar, maka partikel terus bergerak maju dengan kecepatan (energi kinetik) lebih rendah.
Menurut mekanika kuantum, partikel bukan hanya dapat terus bergerak maju, melainkan

juga terpantul.

e Jika I = Vi, maka ¢ =~ k, sehingga fluks terpantul sangat kecil atau nol sedangkan fluks
vang diteruskan sama atau hampir sama dengan fluks yang datang (lihat persamaan (16)).
Ini dapat dipahami bahwa apabila E > V; perubahan lingkungan dari V' =0 ke V =V}
tidak terlalu dirasakan, sehingga partikel terus bergerak maju tanpa banyak perubahan

dan tidak ada vang terpantul.

e Sebaliknya, jika E hanya sedikit saja lebih tinggi dari V), maka ¢ — 0, sehingga fluks
vang diteruskan sangat kecil atau nol sedangkan fluks terpantul sama atau hampir sama
dengan fluks yang datang (lihat persamaan (16)). Pada kasus ini, perubahan lingkungan

dari V' =0 ke V = |}, sangat terasa.

e Jika E < Vj, maka q = ix (g imajiner, « riil), sehingga |R|* = 1

e 2m(E — V) . (Vo —E) _ 5 4

= 2 = i°K (17)
2om(Vy, - F
= —(;:_2 ) (18)
k+ ik kE—ir
2 oo
|R| _RR_(R:—?ZH..) (L:»I-?Zh:)_l' (19)

Berarti, semua partikel dipantulkan, terjadi pemantulan sempurna (total reflection). Na-
mun, nilai |T|? # 0, yang berarti bahwa ada peluang partikel masuk ke daerah 2. Ini
yang menjelaskan efek terobosan, yang dibahas di bawah, yang merupakan fenomena
kuantum, tidak ditemukan dalam fisika klasik. Dengan q¢ = ik, us(x) cepat meluruh
dengan bertambahnya z:

gy =Te™ (20)

sehingga rapat peluang mendapat partikel di daerah 2 juga cepat meluruh:

Jus(a)[2 = |TPe~2 (21)
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e Kita lihat pada analisis mekanika kuantum di atas bahwa pada amplitudo refleksi R dan
amplitudo transmisi T tidak terdapat h, yvang dapat dianggap menjadi ciri perhitun-
gan mekanika kuantum. Seakan-akan, dengan demikian, perhitungan mekanika kuantum
tersebut memenuhi limit klasik (ingat prinsip korespondensi), yang berarti fenomena re-
fleksi juga dapat terjadi dalam proses fisika klasik. Namun, pada kenyvataannya, pada
proses fisika klasik hal itu tidak terjadi. Mengapa? Sesungguhnya, perhitungan mekanika
kuantum di atas tidaklah memenuhi limit klasik. Untuk memenuhi limit klasik, yaitu
bahwa partikel menunjukkan fenomena gelombang, bahwa terjadi refleksi, maka panjang
gelombang de Broglie partikel (A = h/p) haruslah lebih kecil dari ukuran sistem yang
diamati. Pada kasus potensial tangga, fenomena terjadi di daerah yvang sangat sempit
di # = 0, di posisi terjadi diskontinuitas potensial. Dengan demikian, A tidak pernah
dapat lebih kecil dari ukuran sistem yang diamati, limit klasik tidak pernah terpenuhi.
Keadaan menjadi mendekati limit klasik, jika A dibuat sangat kecil dengan menaikkan
energi (momentum). Namun, pada energi tinggi, ¢ ~ k, sehingga juga tidak terjadi

refleksi.

B. Potensial sumur

Potensial sumur diberikan sebagai berikut:

0 ,(z<—a)
Viz)=¢ -V , (ra<z<a) . (22)
0 ,(zx>a)
Kita anggap partikel mula-mula datang dari kiri (z7) menuju ke kanan (z7). Ada tiga daerah
yvang diamati, dengan dua bidang hatas, yaitu di titik * = —a dan r = a. Kita mulai dengan

persamaan Schrodinger, yang kita ubah menjadi persamaan differensial:

2 2

‘%%U( t) + V(x)u(z) = Bu(x) \24)
|[E—V(z

dﬁzu(ﬂ M}.&M u(@) =0 (24)

Energi total E tetap sama, baik di daerah 1 (z < —a), daerah 2 (—a < 2 < a), maupun di
daerah 3 (z > a).
e Daerah 1 (x < —a):
d? BmE

(@) + T (@) =
dz () + Ky () =0, (ﬁ:ng) (25)
— uy(x) = €** 4 Re™= (26)
df—iul(xj = ik (e™* — Re~™?) (27)
Ji(#) [RI%). (28)
4
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e Daerah 2 (—a < x < a):

m?ﬁg(.’l‘) -+ 12 Ig[:ll','} =10
d? 2m(E + Vi
—}Fug( )+q’r'jgl: ) 0 ( 2:%) {29}
— ug(x) = Ae'® 4 Be™# (30)
d—_ruz(:zr} =4y (At*i'?'T - be*"”’) (31)
‘ . hy ;
Jo(x) = T—H(lﬂlz —1B[*) (32)
(33)
e Daerah 3 (z > a):
d® N, 2mE
d:—gu,;{:l,) I = us(x)
dz
— = —u3(z) + K’u3(z) =0 (34)
— ug(z) = Te** (35)
Eu-d(:r} = {kTe® (36)
_ hk
Jalx) = —|TP. (37)
m
e Kita tinjau di bidang batas x = —a. Sesuai syarat kontinyu:
uy(—a) = us(—a) = e ** 4 Re™ = Ae™"" 4 Be'® (38)
afxl($)|$=_ﬂ = @ug(mﬂﬁ_a — k (e7** — Re'*®) = q (Ae™ — Be'1") (39)
ji(=a) = ja(=a) = k(1 - |RI*) = q(|A]? - |BP) (40)
Dari persamaan (38) dan (39) diperoleh:
2 ) )
-5 [(q+ k)e ™ + (¢ — k)Re™] (41)
fi
— p—aqa [{q o —ﬂm (q e kJRfiim} (42}
2q ‘
¢ Kita tinjau di bidang batas ¥ = a. Sesuai syarat kontinyu:
us(a) = ug(a) = Ae'® + Be® = Tete (43)
d : o
3 () ama = (@) ama — ¢ (A€ — Be0) = KT (44)
ja(a) = ja(a) > a( A — |BJ?) = kIT[2. (45)

o
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Dari persamaan (40) dan (45) diperoleh kekekalan fluks:

‘ L, Dk ,
(|4 = |BI*) = —=|T|*. (46)

ik hq
L m

a4y e
P (1 1)
Dari persamaan (43), dan (44) diperoleh:
— g

2q

g

A= (g + k)Te™ (47)

&

2q

B (g — k)Te*™™, (48)

Dari persamaan (41) dan (47), serta (42) dan (48) diperoleh:

e-j.qa [(q ofi ff)E“ikﬂ' e (Q o k_)Rcikn] — e—iq:‘r-(q . k)Teiﬁ:a {49}
e—iqa [{q — k)e—ikﬂ + (q ot k)&ika] = ..{qcu(q s k:lTeika. ) (5(]}

Dari persamaan (49) dan (50) diperoleh amplitudo refleksi dan amplitudo transmisi:

R = jo—2ika (g* — k?) sin 2qa (51)
2kq cos 2qa — i(q* + k?) sin 2qa
o 2k
.TY - E!—Z?.kﬂ q {52}

2kq cos 2qa — i(q? + k2) sin 2qa

Jika E = V4, maka g = k, schingga refleksi kecil atau tidak ada. Jika £ — 0, maka
k — 0, sehingga transmisi kecil atau tidak ada. Jika 2ga = nm, (n = 1,2,3,...), refleksi

nol. Ini terjadi pada energi:

2 2r(E + Vo)  nim? n*m2h?

= E = 7 L He
h? 7y R 8ma? Yo (3)
C. Potensial penghalang
Potensial penghalang diberikan sebagai berikut:
0 ,(z<—a)
Vig) = b, (ma<z<a) . (54)

0 , (z>a)

Perhitungan untuk kasus potensial penghalang sama dengan perhitungan untuk kasus potensial
sumur, namun dengan mengubah Vi menjadi —V;. Dengan demikian, amplitudo refleksi dan

amplitudo transmisi diperoleh sebagai:

B = jo-tika (g? — k*) sin 2qa (55)
- 2kq cos 2qa — i(q® + k%) sin 2qa o
2kq

2kq cos2qa — i(g® + k?)sin2qa ’

G E—Eiku

dengan
2 2m(E — V)

72 ; (57)

q
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Jika E >3V, maka ¢ ~ k., sehingga refleksi kecil atau tidak ada. Apabila E sedikit saja lebih
tinggi dari Vy, maka ¢ — 0, sehingga sin 2ga ~ 2qa, R — 1, transmisi kecil. Jika 2qa = nm,
(n=1,2,3,...), refleksi nol. Ini terjadi pada energi:

n*m?h?

B = Vo . 58
Sma? Y (58]

D. Efek terobosan
Hal yang menarik pada kasus potensial penghalang adalah jika E < V. Jika E < V4:

o 2m(E-Vo) 2m(Vo—-E) .,

= 7 3 ik (60)
[2m(Vp — E) :
= —ﬁuﬁ {ﬁ]‘}
; 2kr
T o 2
¢ 2kr cosh 2ka — i(k? — k?) sinh 2ka (o)
(2kx)?

T*

- : . 63
(k2 + K2)2sinh® 2ka + (2kk)? (63)

Walaupun E < Vi, transmisi tetap ada. Ini disebut fenomena terobosan atau efek terobosan
(seolah-olah partikel menerobos ke dalam potensial penghalang dan muneul di sisi lain). Jika
potensial penghalang sangat tinggi (E < Vj) dan / atau sangat lebar (a > 1), maka ka > 1,

sehingga sinh 2ka =~ %{?2"“ dan peluang transmisi / terobosan menjadi lebih sederhana:

(4kk)? ( ke \? _,.
TI? ~ ~ A 64
|7 (k2 + K2)2edra 4 4(2kk)2 k24 g2 . )

Untuk bentuk potensial bukan kotak, |T'|? secara pendekatan dapat dicari sebagai berikut. Kita
ambil persamaan (64) dan hitung logaritma naturalnya:

dkk
k2 + K2

2
In|T]* ~In ( ) + Ine *** ~ (suatu nilai) — 4ka. (65)
Untuk selanjutnya, kita ambil saja:

In|T|* ~ —(2x)(2a). (66)

Apabila V (x) tidak berbentuk kotak, kita bagi menjadi beberapa bagian, dengan lebar masing-
masing Az, sehingga terdapat N = 2a/Ax (lihat Gasiorowicz Gambar 4-4). Untuk tiap bagian

kita anggap  konstan sebesar nilai rata-ratanya (k). Dengan demikian diperoleh:

N N
In|T|? ~ Z In|T|2 ~ —QZA;E(H) : (67)
n=1

rn—=1

ngat kembali:

cosiz = coshx , sinir =isinhr, cosh®z—sinh®z=1. {59)
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Apabila Az dibuat sangat kecil (infinitesimal), Az — dz, diperoleh:

In|T|? =~ —2/&’3:&1{;1:} ~ “% fd:r:w?m{V(:r:) - FE). (68)
|T|2 ~ Ge—%fdx\fﬁn{t‘(:r)—ﬁ} ) (69}

Beberapa contoh fenomena terobosan diberikan di Gasiorowicz.

Pada fenomena terohosan energi total kurang dari potensial, berarti partikel bergerak dengan
energi kinetik negatif, padahal energi kinetik selalu positif, bagaimana penjelasannya? Bahwa
partikel bergerak dengan energi kinetik negatif, itu bayangan di pikiran kita. Sebaiknya, kita
lihat saja, apakah memang dapat kita temukan atau amati partikel bergerak dengan energi
kinetik negatif pada efek terobosan. Kita ambil potensial penghalang kotak dan lakukan sebagai
berikut:
Partikel dibayangkan memiliki energi kinetik negatif selama berada di dalam potensial pengha-
lang, yang lebarnya, anggap saja, 2a. Untuk mendapatkan / mendeteksi / mengamati partikel
berada di dalam potensial, ketelitian pengamatan posisi Ax haruslah sangat kecil dibandingkan
dengan lebar potensial:

Az < 2a. (70)

Menurut ketidakpastian Heisenberg ApAax = h/2, ketelitian pengamatan momentum Ap men-
jadi:

h
Ap > —, (71)
da
yvang memberikan ketelitian pengamatan energi kinetik AE sebesar:
ﬁQ
AE> ——. 72
o 32ma? (72)

Nilai AE haruslah sangat kecil dibandingkan dengan nilai mutlak energi kinetik |E — V| =
Vo — E:

?-12 52 ﬁ.'z ﬁ_2 ﬁQﬁ:Q ﬁ,?’
Vo — E » AF — AE — , 73
g > > 32ma? 2m > > 32ma? 2m > 32ma? (7)
sehingga:
dra > 1 (74)

dan akibatnya, lihat persamaan (64), peluang terobosan sangat kecil (|7 — 0). Dengan
demikian, apabila benar kita amati energi kinetik bernilai negatit (dan ini sesuatu yang berten-
tangan dengan fisika), efek terobosan sesungguhnya juga tidak terjadi (peluangnya sangat kecil),
dan apabila efek terobosan tidak terjadi, tidak perlu lagi kita khawatir dengan atan memper-
tanyakan keberadaan partikel bergerak dengan energi kinetik negatif. Sebaliknya, jika efek
terobosan terjadi, energi kinetik negatif tidak teramati (karena ketelitian pengamatan energi

kinetik lebih besar dari nilai mutlak energi kinetik yang mungkin).
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