

BIOINFORMATICS EDUCATION

Group....

Member Group:

1.
2.
3.
4.
5.
6.
7.

BIOINFORMATICS EDUCATION

Introduction

Bioinformatics Education

Bioinformatics education is a science of teaching and learning using computers and information technology to solve biological problems (Sari et al., 2022; Koch & Fuellen, 2008). This means that bioinformatics education can include knowledge and skills from biology, mathematics, statistics, physics, chemistry, medicine, pharmacology, computer science, and information technology (Ranganathan, 2005). Efforts to integrate bioinformatics education effectively are a big challenge (Brass, 2000).

Science, Technology, Engineering, and Mathematics (STEM) are areas of content that are closely intertwined with each other. STEM integration is an excellent way to understand complex reciprocal relationships in the context of real-world problem-solving (Chai, 2009). So that increasing STEM literacy for prospective biology teachers is a challenging effort for educators and researchers. Joyner & Parks (2023) mentions that the goal of enhanced pedagogical development to address undergraduate science, technology, engineering, and mathematics (STEM) literacy development is well recognized. However, the methodology and application to implement such lessons can take time and effort. Prospective biology teachers are an important target in integrating formal bioinformatics education with STEM literacy.

Reference:

Brass A (2000). Bioinformatics education—a UK perspective. *Bioinformatics* 16, 77–78.

Chai, C. S. (2019). Teacher professional development for science, technology, engineering, and mathematics (STEM) education: A review from the perspectives of technological pedagogical content (TPACK). *The Asia-Pacific Education Researcher*, 28(1), 5-13.

Joyner, J. L., & Parks, S. T. (2023). Scaffolding STEM Literacy assignments to build greater competence in microbiology courses. *Journal of Microbiology & Biology Education*, 24(1), e00218-22.

Koch I, Fuellen G (2008). A review of bioinformatics education in Germany. *Brief Bioinform* 9, 232–242

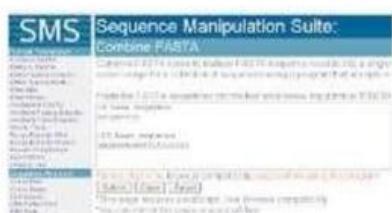
Ranganathan S (2005). Bioinformatics education—perspectives and challenges. *PLoS Comput Biol* 1, e52

Sari, I. J., Vongsangnak, W., & Pongsophon, P. (2022). The Effect of Bioinformatics Module on Molecular Genetics Concepts on Senior High School Students' Computational Thinking Skills. *Shanlax International Journal of Education*, 10(2), 9-17.

Based on the precedent above, let's try to make interesting variations of bioinformatics learning for students in school, especially for high school students who will learn Genetics, Evolution, or the role of genetic engineering.

Follow this step by step:

1


Analyze the Learning Outcomes and high school materials that are appropriate for the application of bioinformatics in biology learning activities

Learning Outcomes	Materials Biologists

2

Determine the bioinformatics tools that can be used for designed biology learning

Please learn one by one and apply it to a learning design that makes you comfortable and exciting

3

Find and analyze *biology as science* research articles that use bioinformatics methods, and demonstrate the application of bioinformatics in the article.

Article Title:

Article Summary:

Research Methods on Articles:

Bioinformatics Tools Used:

Conclusion after demonstrating Bioinformatics Tools:

Design of Bioinformatics Methods and Tools to be Used for Learning:

4

Learn about the STEM literacy domain, decide on one STEM literacy domains that you think can increase the effects of bioinformatics learning and create instruments

STEM Literacy Domain	STEM Literacy Indicators
Knowledge of STEM	Understanding STEM Concepts Understanding STEM Characteristics Explanation Using STEM Concepts Identifying STEM-related Issues/Concepts STEM Applications Decision Troubleshooting
Attitudes Toward STEM	Attitudes Toward STEM Careers Focused on STEM Connecting STEM with Society/Economy/Environment Participate in STEM Issues or Culture
STEM Skills	STEM Process/Practice Focused STEM Career Practices 21st Century Skills STEM Practice Integration/Learning (Creative Thinking/Innovative Thinking)

Usable Instruments:

How to Process Grades:

5

Design learning activities using bioinformatics in biology learning activities by filling in the beginning, core, and closing activities

Please choose one of the learning models for bioinformatics learning:

- *Inquiry based learning* (<https://files.eric.ed.gov/fulltext/EJ1053967.pdf>)
- *Computer inquiry based-teaching* (<https://files.eric.ed.gov/fulltext/EJ1328112.pdf>)
- *Project based Learning*
(<https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005620>)
- *Problem based learning*
(<https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006746>)

Initial Activities

Core Activities:

Closing Activities:

6

Please Test your design in front of
your classmates, and ask for their
opinions as an assessment and
improvement material