
Name:

Proving Triangle Congruence using SSS and SAS

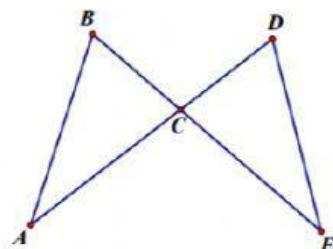
Drag and drop the boxes to fill in the blanks and complete the proof.

GIVEN ▶ $\overline{EF} \cong \overline{GH}$,
 $\overline{FG} \cong \overline{HE}$

PROVE ▶ $\triangle EFG \cong \triangle GHE$

Statements	Reasons
1. $\overline{EF} \cong \overline{GH}$	1. _____
2. $\overline{FG} \cong \overline{HE}$	2. _____
3. $\overline{GE} \cong \overline{GE}$	3. _____
4. $\triangle EFG \cong \triangle GHE$	4. _____

Given


Given

Reflexive Property

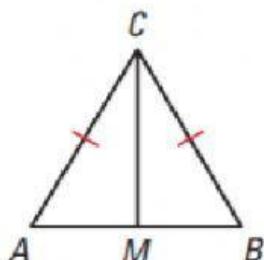
SSS

SAS

Given: $\overline{BC} \cong \overline{DC}$; $\overline{AC} \cong \overline{EC}$
Prove: $\triangle ABC \cong \triangle DCE$

Statements	Reasons
1.	1. Given
2.	2. Vertical \angle s Theorem
3. $\triangle ABC \cong \triangle DCE$	3. _____

$\angle ACB \cong \angle ECD$


SAS

$\overline{BC} \cong \overline{DC}$

$\overline{AC} \cong \overline{EC}$

SSS

GIVEN ▶ $\overline{AC} \cong \overline{BC}$,
M is the midpoint of \overline{AB} .
PROVE ▶ $\triangle ACM \cong \triangle BCM$

Statements	Reasons
1.	1. Given
2.	2. Given
3. $\overline{AM} \cong \overline{MB}$	3.
4. $\overline{CM} \cong \overline{CM}$	4.
5. $\triangle ACM \cong \triangle BCM$	5.

$$\overline{AC} \cong \overline{BC}$$

Definition of midpoint

Reflexive Property

M is the midpoint of \overline{AB}

SAS

SSS