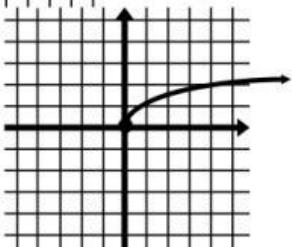
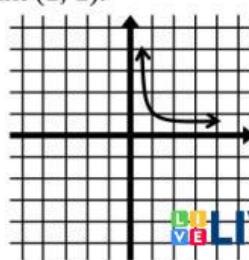

## Basic Derivatives Practice Worksheet

**Try your best on this and finish it for homework. We will go over the solutions and I will check for completeness next week.**


Rewrite each function, differentiate, and then simplify (no negative exponents!)

| Function                                       | Rewrite | Differentiate | Simplify |
|------------------------------------------------|---------|---------------|----------|
| A. $y = \frac{5}{2x^3}$                        |         |               |          |
| B. $y = \frac{5}{(2x)^3}$                      |         |               |          |
| C. $y = \frac{7}{3x^{-2}}$                     |         |               |          |
| D. $y = \sqrt[6]{x}$                           |         |               |          |
| E. $y = \frac{1}{x^2} + \frac{1}{x^3}$         |         |               |          |
| F. $y = \frac{2}{\sqrt[3]{x}} - \frac{3}{x^2}$ |         |               |          |


G. Find the equation of the line tangent to  $y = x^2 - 4$  at the point (1, -3).



H. Find the equation of the line tangent to  $y = \sqrt{x}$  at the point (4, 2).



I. Find the equation of the line tangent to  $y = x^{-\frac{1}{2}}$  at the point (1, 1).



|                                                                                                                                                                                                                                    |                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p><b>The Constant Rule</b><br/>The derivative of a constant function is zero.</p> $\frac{d}{dx}[c] = 0$                                                                                                                           | <p><b>The Power Rule</b><br/>If <math>n</math> is a rational number, then the function <math>f(x) = x^n</math> is differentiable and...</p> $\frac{d}{dx}[x^n] = n \cdot x^{n-1}$                                   |
| <p><b>The Constant Multiple Rule</b><br/>If <math>f</math> is a differentiable function and <math>c</math> is a real number, then <math>c \cdot f</math> is differentiable and...</p> $\frac{d}{dx}[c \cdot f(x)] = c \cdot f'(x)$ | <p><b>The Sum and Difference Rules</b><br/>The sum (or difference) of two differentiable functions, <math>f</math> and <math>g</math>, is differentiable and...</p> $\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$ |

Use an applicable rule to find each derivative.

|                                         |                                                                    |                                                    |
|-----------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|
| 1. $f(x) = x^5 - 2x^3 + 7x - 12$        | 2. $g(x) = 3x^2 + 2x + 1$                                          | 3. $s(t) = -16t^2 + 70t + 500$                     |
| 4. $y = \frac{2}{x}$                    | 5. $y = 2\sqrt{x}$                                                 | 6. $y = \frac{4x^2}{5}$                            |
| 7. $y = -\frac{3}{2}x$                  | 8. $y = \frac{1}{2\sqrt[3]{x^2}}$                                  | 9. $f(x) = x^3 - 4x + 5$                           |
| 10. $g(x) = -\frac{x^4}{2} + 3x^3 - 2x$ | 11. $h(x) = \sqrt[5]{x} - \sqrt[4]{x} - \frac{1}{x^{\frac{2}{3}}}$ | 12. $f(x) = -\frac{1}{2} + \frac{7}{5}x^2$         |
| 13. $f(x) = x^2 + 5 - 3x^{-2}$          | 14. $h(s) = s^{\frac{4}{5}} - s^{\frac{2}{3}}$                     | 15. $F(T) = T^{\frac{2}{3}} - T^{\frac{1}{3}} + 4$ |
| 16. $y = 3x(6x - 5x^2)$                 | 17. $f(x) = \frac{x^3 - 3x^2 + 4}{x^2}$                            | 18. $h(x) = \frac{2x^2 - 3x + 1}{x}$               |