Name	Date	

In and Out Function Tables

In Algebra, the **function** of x is to produce y. That means when you know the value of x, you can **substitute** it into expressions and find the value of y. These values of x and y can be used to form **coordinate pairs** to graph.

Let's look at an example. In the in and out, or function, table below, x = 5. As you can see, 5 is substituted for x in each equation to find y. Then the coordinate pairs are formed. You will graph the coordinate pairs in a bit.

GRAPH ONE: x = 5					
equation	substitution	value of y	coordinate pair		
y = <mark>x</mark> - 1	y = <mark>5</mark> - 1	y = 4	(5, 4)		
y = <mark>x</mark> - 2	y = <mark>5</mark> - 2	y = 3	(5, 3)		
y = <mark>x</mark> - 3	y = <mark>5</mark> - 3	y = 2	(5, 2)		
y = <mark>x</mark> - 4	y = <mark>5</mark> - 4	y = 1	(5, 1)		
y = <mark>x</mark> - 5	y = <mark>5</mark> - 5	y = 0	(5, 0)		

Now, complete the in and out function table below and graph the results.

GRAPH TWO: x = 3					
equation	substitution	value of y	coordinate pair		
y = x + 7		y =	(,)		
y = x + 6		y =	(,)		
y = x + 5		y =	(,)		
y = x + 4		y =	(,)		
y = x + 3		y =	(,)		

GRAPH ONE: x = 5

GRAPH TWO: x = 3

