

MULTIPLES

A multiple is the result of multiplying one number by another. For example, $3 \times 5 = 15$, 15 is a multiple of 3 and 5. You can also say that 3, 6, 9, 12, etc are multiples of 3.

Write the multiples of the following numbers till 4th place :

(i) 7

____, ____ , ____ ,

(ii) 9

____, ____ , ____ ,

(iii) 11

____, ____ , ____ ,

(iv) 13

____, ____ , ____ ,

Write the multiples of the following numbers till 6th place :

(i) 8

____, ____ , ____ ,
____, ____ ,

(ii) 12

____, ____ , ____ ,
____, ____ ,

(iii) 14

_____, ____, ____,
_____, ____,

(iv) 16

_____, ____, ____,
_____, ____,

Write the multiples of 6 till the 8th place – in ascending order and then in descending order.

Ascending order

_____, ____, ____,
_____, ____,
_____, ____, ____,

Descending order

_____, ____, ____,
_____, ____,
_____, ____, _____

Write the multiples of the following numbers till 5th place :

(i) 10

_____, ____, ____,
_____, ____,

(ii) 100

_____, ____,
_____,
_____, _____,

(iii) 1000

_____,
_____, ____,
_____,
_____,

(iv) 10000

_____, _____,
_____,
_____, _____,

Find the next four multiples :

(i) 0 , 5 , 10 , _____ , _____ , _____ , _____

(ii) 0 , 10 , 20 , _____ , _____ , _____ , _____

Now , write the common multiples from the above :

_____ , _____ , _____

What type of numbers are 2 , 4 , 6 ? _____

Write the multiples of each till 8th place :

2 = _____ , _____ , _____ , _____ , _____ , _____ , _____ , _____

4 = _____ , _____ , _____ , _____ , _____ , _____ , _____ , _____

6 = _____ , _____ , _____ , _____ , _____ , _____ , _____ , _____

Now , write the common multiples of 2 , 4 , 6

_____ , _____ , _____ , _____ , _____

Check if the dividend is a multiple of the divisor by writing a
Yes or No

YES NO Remainder

(i) $27 \div 5$

(ii) $28 \div 7$

(iii) $54 \div 6$

(iv) $59 \div 9$

(v) $42 \div 6$

(vi) $72 \div 8$

(vii) $84 \div 7$

(viii) $104 \div 13$

(ix) $385 \div 7$

(x) $297 \div 9$

(xi) $459 \div 6$

(xii) $376 \div 4$

(xiii) $600 \div 8$

(xiv) $625 \div 5$

(xv) $526 \div 5$

Fill in the blanks:

- (a) The third multiple of 6 is _____.
- (b) The first multiple of a number is the _____.
- (c) _____ is a multiple of every number.
- (d) The product of two numbers is also their _____.
- (e) The dividend becomes the multiple when there is no _____.
- (f) The seventh multiple of 7 is _____.
- (g) The number which has no multiple other than itself is _____.
- (h) The first common multiple of 2 and 3 is _____.