

Part 1: Counting Atoms

H_2O	# of atoms	NaCl	# of atoms	O_2	# of atoms	CaCO_3	# of atoms	$\text{C}_6\text{H}_{12}\text{O}_6$	# of atoms
H		Na		O		Ca		C	
O		Cl				C		H	
						O		O	

Part 2: Molar Mass: Use the information above and your new periodic table to calculate the molar mass of all five compounds.

1. H_2O g/mol
2. NaCl g/mol
3. O_2 g/mol
4. CaCO_3 g/mol
5. $\text{C}_6\text{H}_{12}\text{O}_6$ g/mol

Part 3: Mole Mass Conversions: Use your mole to mass triangle (see above) and molar masses to solve the following:

1. Convert 5.00 moles of H_2O to grams.
2. Convert 20.0 grams of NaCl to moles.
3. Convert 3.50 moles of O_2 to grams.
4. Convert 15.0 grams of CaCO_3 to moles.
5. Convert 2.00 moles of $\text{C}_6\text{H}_{12}\text{O}_6$ to grams.