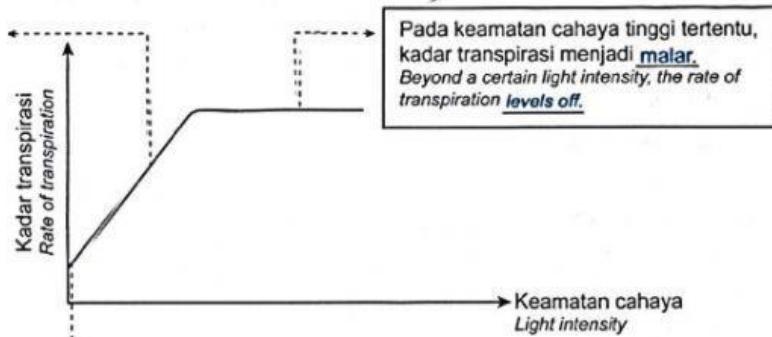


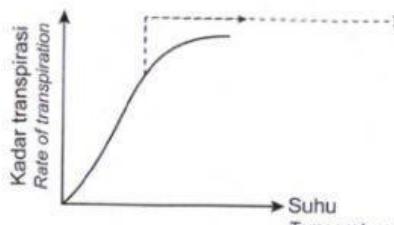
The Necessity of Transpiration in Plants


_____ is the loss of water in the form of water vapour by _____ from surface of plants into the atmosphere.

- ④ The evaporation of water from the mesophyll cells removes _____ from the leaves. This produces a _____ cooling effect to plants.
- ③ Transpiration helps the supply of water for _____ and to maintain _____ plant cells.
- ② Transpiration creates _____ pull for the transport of _____ and ions in the xylem vessels.
- ① Transpiration pull helps the _____ of water by the roots.

The Environmental Factors that Affect Rate of Transpiration

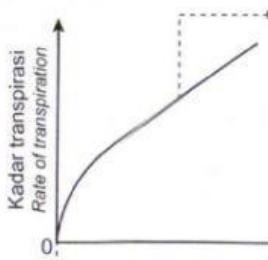
1. The rate of transpiration can be affected by the following environmental factors:
(a) _____ intensity (c) _____ movement
(b) _____ (d) _____


The rate of transpiration _____ with the increase in light intensity.

As light intensity increases, the stomata _____, allowing more water vapour in the air spaces to diffuse _____.

Beyond a certain light intensity, the rate of transpiration levels _____.

At low light intensity, the rate of transpiration is _____.


In darkness, the stomata are _____. Only a small amount of water vapour diffuses _____.

The rate of transpiration increases when temperature _____.

As temperature increases, the rate of _____ of water from the surfaces of mesophyll cells increases.

More water vapour diffuses out of the leaf through the _____.

In still air, the rate of transpiration _____.

The water vapour that diffuses out of the leaf _____ around the stoma.

_____ the concentration gradient of water vapour between the airspaces of the leaf and the _____.

The _____ the wind speed, the _____ the rate of transpiration.

Wind carries away water vapour around the _____, maintaining a concentration gradient

Of water vapour between the _____ and the surrounding air. The rate of diffusion _____.