Writing Equations of Parallel and Perpendicular Lines

Parallel to y = -5x + 2 and passes through point (1, -4)

$$x =$$
____ $y =$ ___ $m =$ ___ $x =$ ___ $y =$ ___ $m =$ ___

$$y = mx + b$$

y = mx + b

Parallel to y = -x - 5 and passes through point (1, -3)

$$x =$$
____ $y =$ ___ $m =$ ____

$$y = mx + b$$

$$y = mx + b$$

Perpendicular to $y = \frac{1}{3}x + 3$ and passes through point (2, -4)

$$y = mx + b$$

Perpendicular to $y = -\frac{1}{2}x$ and passes through point (4,3)

$$y = mx + b$$

$$y = mx + b$$

$$y = mx + b$$

Writing Equations of Parallel and Perpendicular Lines

Parallel to $y = \frac{3}{4}x - 3$ and passes through point (-4, -5)

$$x =$$
____ $y =$ ____ $m =$ ____ $x =$ ____ $y =$ ____ $m =$ ____

y = mx + b

y = mx + b

Parallel to $y = -\frac{1}{5}x - 2$ and passes through point (5,3)

y = mx + b

$$y = mx + b$$

Perpendicular to y = 5x - 3 and passes through point (-5,5)

 $x = \underline{\hspace{1cm}} y = \underline{\hspace{1cm}} m = \underline{\hspace{1cm}}$ y = mx + b

y = mx + b

y = _____

Perpendicular to y = 2x - 5 and passes through point (6,7)

 $x = \underline{\hspace{1cm}} y = \underline{\hspace{1cm}} m = \underline{\hspace{1cm}}$ y = mx + b

y = mx + b

y = _____