


14. Equivalent Fractions Rule

A. Visual learning

How can you use multiplication or division to find equivalent fractions?

Use Multiplication

What are some fractions equivalent to $\frac{2}{3}$?

$$\frac{2}{3} = \frac{4}{6}$$

To find the equivalent fractions, **multiply** the numerator and the denominator by the **same number**.

Multiply by 2

$$\frac{2}{3} \xrightarrow{\times 2} \frac{4}{6}$$

Multiply by 3

$$\frac{2}{3} \xrightarrow{\times 3} \frac{6}{9}$$

Multiply by 40

$$\frac{2}{3} \xrightarrow{\times 40} \frac{80}{120}$$

$\frac{2}{3}$; $\frac{4}{6}$; $\frac{6}{9}$ and $\frac{80}{120}$ are equivalent fractions.

Use Division

What are some fractions equivalent to $\frac{18}{24}$?

Divide the numerator and the denominator by the **same number**.

Divide by 2

$$\frac{18}{24} \xrightarrow{\div 2} \frac{9}{12}$$

Divide by 3

$$\frac{18}{24} \xrightarrow{\div 3} \frac{6}{8}$$

Divide by 6

$$\frac{18}{24} \xrightarrow{\div 6} \frac{3}{4}$$

$\frac{9}{12}$; $\frac{6}{8}$; $\frac{3}{4}$ and $\frac{18}{24}$ are equivalent fractions.

B. Vocabulary

equivalent fractions: _____

multiply: _____

same number: _____

divide: _____

C. Independent practice

In 1 – 4, write the **missing numbers**.

$$1. \frac{2}{7} = \frac{\boxed{\quad}}{\boxed{\quad}} \quad \begin{array}{l} \text{× 3} \\ \text{× 3} \end{array}$$

$$2. \frac{1}{3} = \frac{\boxed{\quad}}{\boxed{\quad}} \quad \begin{array}{l} \text{× \quad} \\ \text{× \quad} \end{array}$$

$$3. \frac{6}{9} = \frac{\boxed{\quad}}{\boxed{\quad}} \quad \begin{array}{l} \text{÷ \quad} \\ \text{÷ \quad} \end{array}$$

$$4. \frac{12}{\boxed{\quad}} = \frac{3}{5} \quad \begin{array}{l} \text{÷ \quad} \\ \text{÷ \quad} \end{array}$$

In 5 – 8, multiply or divide to find an equivalent fraction to the given one.

$$5. \frac{12}{20} = \frac{\boxed{\quad}}{\boxed{\quad}} \quad \begin{array}{l} \text{÷ 4} \\ \text{÷ 4} \end{array}$$

$$6. \frac{6}{8} = \frac{\boxed{\quad}}{\boxed{\quad}} \quad \begin{array}{l} \text{÷ 2} \\ \text{÷ 2} \end{array}$$

$$7. \frac{5}{9} = \frac{\boxed{\quad}}{\boxed{\quad}} \quad \begin{array}{l} \text{× 3} \\ \text{× 3} \end{array}$$

$$8. \frac{3}{8} = \frac{\boxed{\quad}}{\boxed{\quad}} \quad \begin{array}{l} \text{× 3} \\ \text{× 3} \end{array}$$

9. Tick (✓) all fractions that are equivalent to $\frac{3}{4}$.

$\frac{2}{4}$

$\frac{1}{3}$

$\frac{6}{8}$

$\frac{12}{16}$

$\frac{9}{16}$

$\frac{9}{12}$

10. In Missy's sports-cards collection, $\frac{2}{3}$ of the cards are football. In Frank's collection, $\frac{12}{21}$ are football.

Frank says they have the same fraction of football cards.

Is he correct? Explain.
