

Moles, Molecules, & Molar Masses

1 mole = 6.022×10^{23} particles
1 mole = molar mass

1. Calculate the mass of 1.58 moles CH₄. [molar mass CH₄ = 16.05 g/mol]

Given: 1.58 moles CH₄

Unknown: ? g CH₄

Will you use molar mass or 6.02×10^{23} to solve this problem?

$$\text{_____} \bigg| \text{_____} = \text{_____}$$

2. How many molecules are there in a 0.583 mole sample of H₂O? [molar mass of H₂O = 18.02 g/mol]

G: 0.583 moles H₂O

U: ? molecules H₂O

Will you use molar mass or 6.02×10^{23} to solve this problem?

$$\text{_____} \bigg| \text{_____} = \text{_____}$$

3. How many moles of 5.79×10^{20} molecules of CO₂? [molar mass CO₂ = 44.01 g/mol]

G: 5.79×10^{20} molecules CO₂

U: ? mole CO₂

Will you use molar mass or 6.02×10^{23} to solve this problem?

$$\text{_____} \bigg| \text{_____} = \text{_____}$$

4. How many moles are in a 35.0 gram sample of H₂O? [molar mass H₂O = 18.02 g/mol]

G: 35.0 g H₂O

U: ? moles H₂O

Will you use molar mass or 6.02×10^{23} to solve this problem?

$$\text{_____} \bigg| \text{_____} = \text{_____}$$

5. How many grams of NaOH do you measure if you need 2.87 moles of NaOH?

$$\text{_____} \bigg| \text{_____} = \text{_____}$$

6. How many moles of NaCl are in 2.11×10^{24} particles of NaCl?

$$\text{_____} \bigg| \text{_____} = \text{_____}$$

7. How many molecules are present in 1.45 moles of H₂O?

$$\text{_____} \bigg| \text{_____} = \text{_____}$$

8. If you have 10.33 grams of copper, how many moles of copper is that?

$$\text{_____} \bigg| \text{_____} = \text{_____}$$

9. If you have 4.90×10^{22} atoms of copper, how many grams of copper is that?

$$\text{_____} \bigg| \text{_____} \bigg| \text{_____} = \text{_____}$$

10. Calculate the molar mass of Al(C₂H₃O₂)₃.

g/mol