LEMBAR KERJA PESERTA DIDIK (LKPD 3)

Mata Pelajaran

: Kimia

Kelas/Semester

: X/Genap

Alokasi Waktu

: 2 x 30 menit

Materi Pokok

: Konsep Redoks

Sub Materi Pokok

: Konsep Oksidasi Reduksi Ditinjau dari Perubahan

Bilangan Oksidasi

NAMA SISWA

KELAS

:

NO ABSEN

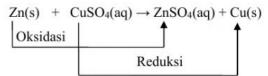
Kompetensi Dasar

- 3.9 Menganalisis perkembangan konsep reaksi oksidasi-reduksi serta menentukan bilangan oksidasi atom dalam molekul atau ion.
- 4.9 Merancang, melakukan, dan menyimpulkan serta menyajikan hasil percobaan reaksi oksidasi-reduksi.

Indikator Pencapaian Kompetensi

- 3.9.1 Mendefinisikan bilangan oksidasi.
- 3.9.2 Menyebutkan aturan penentuan bilangan oksidasi.

- 3.9.3 Menentukan bilangan oksidasi atom dalam molekul atau ion.
- 3.9.4 Mendefinisikan reaksi reduksi oksidasi berdasarkan konsep perubahan bilangan oksidasi.
- 3.9.5 Menentukan oksidator dan reduktor dari suatu reaksi reduksi oksidasi.
- 4.9.1 Mengamati wacana reaksi reduksi-oksidasi yang tidak melibatkan oksigen maupun elektron.
- 4.9.2 Mengajukan pertanyaan tentang hal-hal yang tidak dimengerti berdasarkan wacana.
- 4.9.3 Mengamati proses terjadinya reaksi redoks berdasarkan perubahan bilangan oksidasi melalui video
- 4.9.4 Menentukan bilangan oksidasi suatu atom dalam molekul atau senyawa ionik berdasarkan aturan penentuan bilangan oksidasi.
- 4.9.5 Menentukan kenaikan atau penurunan bilangan oksidasi suatu unsur atau senyawa.
- 4.9.6 Mengelompokkan unsur atau senyawa yang mengalami penurunan bilangan oksidasi dan kenaikan bilangan oksidasi.
- 4.9.7 Menganalisis hubungan kenaikan dan penurunan bilangan oksidasi dengan konsep oksidasi reduksi berdasarkan perubahan bilangan oksidasi
- 4.9.8 Menyimpulkan konsep reaksi reduksi-oksidasi berdasarkan perubahan bilangan oksidasi.
- 4.9.9 Mengamati unsur atau senyawa yang merupakan oksidator atau reduktor dalam suatu reaksi redoks.
- 4.9.10 Menentukan unsur atau senyawa yang mengalami reaksi reduksi dan oksidasi berdasarkan perubahan bilangan oksidasi.
- 4.9.11 Mengelompokkan zat yang bertindak sebagai pengoksidasi dan zat yang bertindak sebagai pereduksi.
- 4.9.12 Menganalisis hubungan zat pengoksidasi dan zat pereduksi dengan reduktor dan oksidator.
- 4.9.13 Menyimpulkan pengertian oksidator dan reduktor.



- Setiap siswa harus membaca LKS ini dengan seksama dan mengerjakan pertanyaan-pertanyaan sesuai dengan instruksi yang diberikan guru.
- Mengerjakan setiap pertanyaan dan permasalahan yang ada dalam LKS secara individu
- Apabila terjadi hal yang tidak dimengerti atau sulit dipahami mintalah bantuan kepada guru untuk menjelaskannya.

MENGAMATI

Amatilah persamaan reaksi di bawah ini!

Berdasarkan reaksi di atas, dapat diketahui bahwa Zn mengalami oksidasi, sedangkan Cu mengalami reduksi.

Fase 1: Permasalahan

Dari uraian di atas, masalah apakah yang dapat kamu temukan? Tuliskan pada kolom di bawah ini!

Fase 2 : Mencari Informasi

Carilah informasi sebanyak - banyaknya mengenai permasalahan konsep oksidasi reduksi ditinjau dari perubahan bilangan oksidasi!

Fase 3: Merumuskan Hipotesis

$$Zn(s)$$
 + $CuSO_4(aq) \rightarrow ZnSO_4(aq) + Cu(s)$
0 +2 +2 0
Oksidasi

Reduksi

Angka yang ditunjukkan pada reaksi diatas menunjukkan bilangan oksidasi

dibawah ini! 1. H₂O 2. CuO 3. MnCl₂ 4. KCI 5. NH₄⁺ 6. $S_2O_7^{2-}$

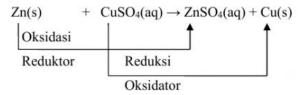
Tentukanlah biloks dari masing-masing unsur berdasarkan senyawa-senyawa

Fase 4: Menguji Kebenaran dari Hipotesis

Dari tabel berikut, tentukan biloks unsurnya serta berikan tanda (✔) pada perubahan biloksnya (naik/turun)

Tabel A.

Reaksi	Ruas kiri		Ruas kanan		Perubahan biloks	
	Unsur/ senyawa	Bilok s	Unsur/ senyawa	biloks	Naik	turun
$CuO(s) + H_2(g) \rightarrow Cu(s) + H_2O(l)$	Cu dalam CuO		Cu H dalam			
	H ₂		H dalam H ₂ O			
$\begin{aligned} MnO_2(s) + 4HCl(aq) &\rightarrow MnCl_2(aq) \\ + 2Cl_2(g) + 2H_2O(l) \end{aligned}$	Mn dalam MnO ₂		Mn dalam MnCl			
	Cl dalam HCl		Cl ₂			
$Fe(s) + 2HCl(aq) \rightarrow FeCl_2(aq) + H_2(g)$	Fe		Fe dalam FeCl ₂			
	H dalam HCl		H ₂			
$Cl_2(g) + 2KI(aq) \rightarrow 2KCl(aq) +$ $I_2(aq)$	Cl ₂		Cl dalam KCl			
	I dalam KI		I ₂			


Setelah kalian menentukan bilangan oksidasi, coba kelompokkan unsur mana yang mengalami penurunan bilangan oksidasi dan kenaikan bilangan oksidasi

Penurunan biloks	Kenaikan biloks
a.	b.
Unsur, ion dan senyawa pada tabel a mengalami redu adalah	LACORES CAROL MARIE LED
Sedangkan Unsur, ion dan senyawa pada tabel b men oksidasi adalah	
Bilangan Oksidasi adalah	
Fase 5 : Menarik Kesimpulan	
Berdasarkan konsep perubahan bilangan oksidasi, apa reaksi oksidasi dan reduksi menurut konsep perubahan bi	of a first over the state of

REDUKTOR DAN OKSIDATOR

MENGAMATI

Amatilah persamaan reaksi berikut:

Berdasarkan reaksi di atas, dapat diketahui bahwa Zn dan CO merupakan reduktor. Sedangkan CuSO₄ dan Fe₂O₃ merupakan oksidator.

Fase 1: Permasalahan

Dari uraian di atas, masalah apakah yang dapat kamu temukan? Tuliskan pada kolom di bawah ini!

Fase 2: Mencari Informasi

Carilah informasi sebanyak - banyaknya mengenai permasalahan konsep oksidasi reduksi ditinjau dari perubahan bilangan oksidasi

Fase 3: Merumuskan Hipotesis

Tentukanlah hasil oksidasi dan hasil reduksi pada masing-masing reaksi redoks dibawah ini seperti pada tabel A.

1.
$$CuO(s) + H_2(g) \rightarrow Cu(s) + H_2O(l)$$

2.
$$MnO_2(s) + 4HCl(aq) \rightarrow MnCl_2(aq) + 2Cl_2(g) + 2H_2O(l)$$

3.
$$Fe(s) + 2HCl(aq) \rightarrow FeCl_2(aq) + H_2(g)$$

4.
$$Cl_2(g) + 2KI(aq) \rightarrow 2KCl(aq) + I_2(aq)$$