

Instructions

- Round all final answers off to 2 decimal places, unless stated otherwise
- If any unit has an exponent, just type the exponent as a normal number, eg m.s-2
- Always indicate direction for all vectors, unless otherwise stated (when they only ask for the **magnitude**)
- Use a comma for decimal numbers

$$F_{net} = ma$$

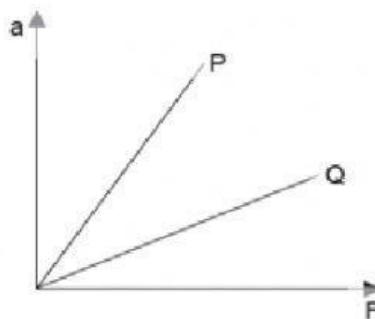
$$W = mg$$

$$\mu_s = \frac{F_N}{f_s}$$

$$\mu_k = \frac{F_N}{f_k}$$

Question 1

Multiple choice questions: Only write the letter of the correct option:

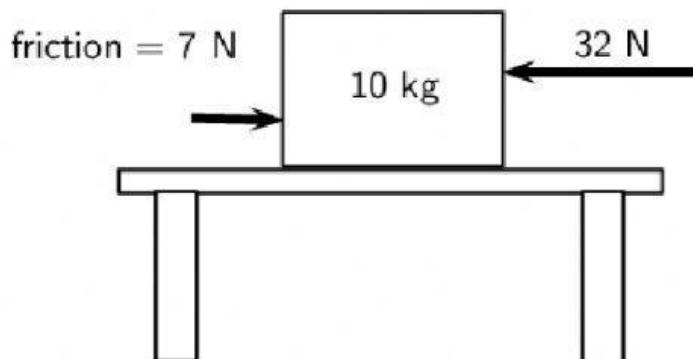

1.1 which one of the following forces is a non-contact force

- A. Tension
- B. Normal force
- C. Gravitational force
- D. Air friction

1.2 A lift is travelling at **constant** velocity. The tension in the cable is:

- A. $F_T = F_g$
- B. $F_T = F_{\text{net}}$
- C. $F_T = \frac{1}{2}F_g$
- D. $F_T = F_g + \frac{1}{2}F_{\text{net}}$

1.3 In an investigation of the relationship between acceleration (a) and net force (F) for two objects P and Q moving on frictionless surface. The following graphs were obtained:

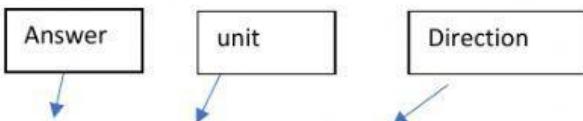


Which one of the following statements is true?

- A. Object Q is smaller than object P.
- B. Object Q has a bigger mass than object P.
- C. The gradient of the graph is not affected by the mass of the object.
- D. Object P and Q have equal mass.

Question 2

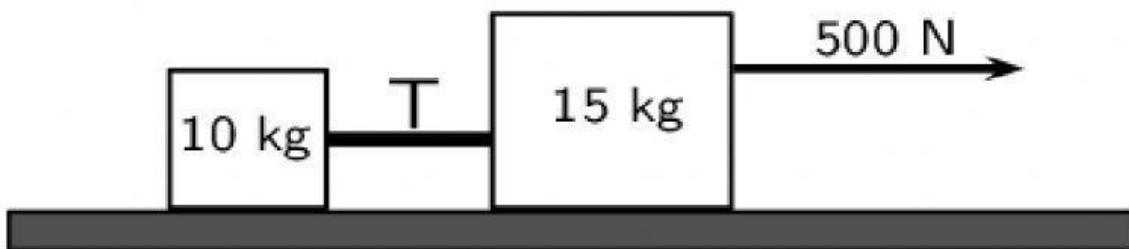
A 10kg box is placed on a table. A horizontal force of magnitude 32N is applied to the box. A frictional force of magnitude 7N is present between the surface and the box.



Draw a force diagram in your book indicating all of the forces acting on the box.

(4)

2.1 Calculate the acceleration of the box.


(4)

$$a = \underline{\hspace{1cm}} \underline{\hspace{1cm}} \underline{\hspace{1cm}}$$

Question 3

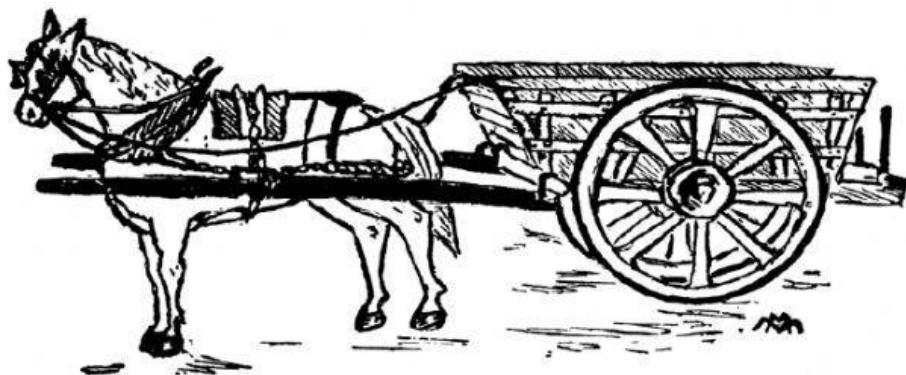
Two crates, 10kg and 15kg respectively, are connected with a thick rope according to the diagram. A force, to the right, of 500N is applied. The 10kg block experiences a frictional force of 150N and the 15kg block experiences a 300N frictional force.

3.1 Calculate the acceleration of the 15kg block.

(4)

{remember that you can look at the system as a whole here, since the motion is in a straight line}

$$a = \underline{\hspace{3cm}}$$


3.2 When determining the tension in the cable between two objects, must you
Isolate a block or look at the whole system. (1)

3.3 Calculate the **magnitude** of the tension in the rope at T. (4)

$$F_t = \underline{\hspace{3cm}}$$

Question 4

4.1 A horse pulls a 120kg cart so that it accelerates at 1.4m.s^{-2} to the left along a rough tar road.

4.1 Draw a fully labelled free body diagram in your book of the forces acting on the cart (4)

4.2 Calculate the kinetic friction between the cart and the road, if the coefficient of kinetic friction between the wheels and the road is 0,28. (3)

$$f_k = \underline{\hspace{3cm}}$$


4.3 Calculate the force the horse must exert in order to accelerate at 1.4m.s^{-2} (4)

$$F_a = \underline{\hspace{3cm}}$$

Question 5

Consider the image below and calculate the following.

The 3 kg block has a kinetic frictional force of 2 N acting.

5.1

When all the blocks within a system are not all moving in the same direction, it is important to look at the system as a whole / isolate blocks and solve simultaneously

5.2 Calculate the acceleration in the system

(4)

$a =$ _____

5.3 **Magnitude** of the tension in F_{T1}

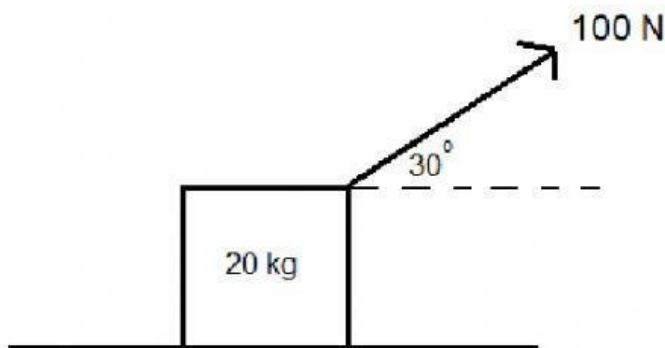
(4)

$F_t =$ _____

Questions focusing on Normal force:

Question 6

Calculate the normal force on the 20 kg block



$$F_n = \underline{\hspace{2cm}} \underline{\hspace{2cm}}$$

Question 7

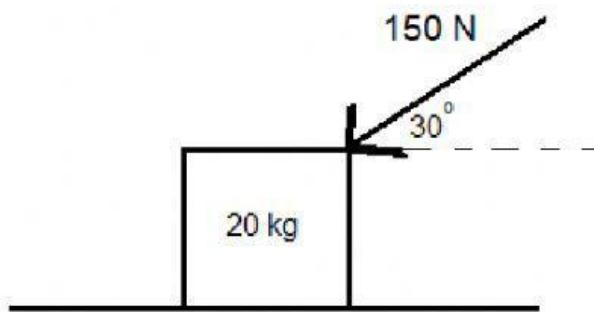
7.1 Draw a free body diagram in your book of all the forces acting on the box

{Hint – break the diagonal force up into its 2 components}

7.2 Choose the correct equation that applies to the diagram

$$F_g = F_N$$

$$F_g = F_N + F_y$$


$$F_g = F_N - F_y$$

7.3 Calculate the normal force on the box below.

$$F_n = \underline{\hspace{2cm}} \underline{\hspace{2cm}}$$

Question 8

8.1 Draw a free body diagram of all the forces acting on the box below.

8.2 Choose the correct equation below

$$F_g = F_N$$

$$F_n = F_g - F_y$$

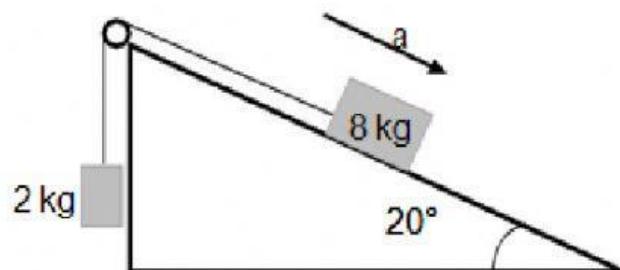
$$F_n = F_y + F_g$$

8.3 Calculate the normal force acting on the box.

$$F_n = \underline{\hspace{2cm}}$$

Question 9

9.1 Choose the correct equation to determine the normal force on the box


$$F_n = F_g$$

$$F_n = F_g - F_{g\parallel}$$

$$F_n = F_{g\parallel}$$

$$F_n = F_{g\perp}$$

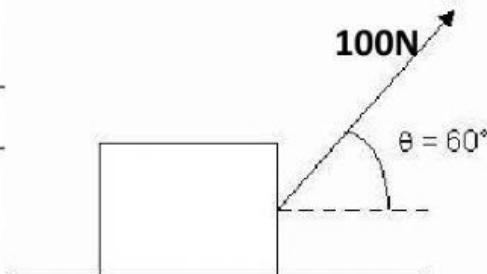
9.2 Calculate the magnitude of the normal force acting on the block below

$$F_n = \underline{\hspace{2cm}} - \underline{\hspace{2cm}}$$

Remember:

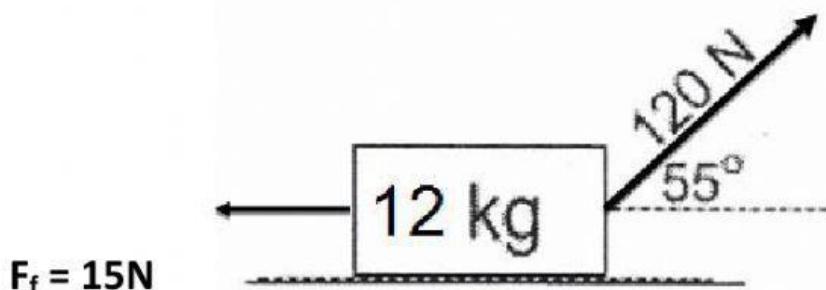
$Y \sin$ if you can $\cos x$

$$F_x = F \cdot \cos \theta$$


$$F_y = F \cdot \sin \theta$$

Question 10

10.1 Determine the horizontal and vertical components of the following force.

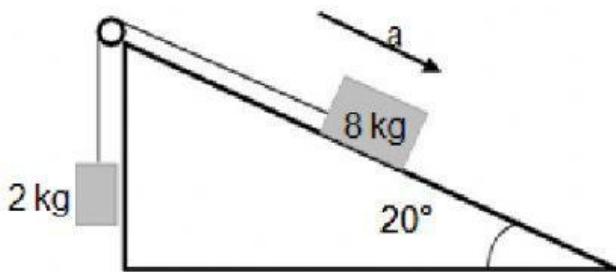

$$F_y = \underline{\hspace{2cm}} - \underline{\hspace{2cm}} - \underline{\hspace{2cm}}$$

$$F_x = \underline{\hspace{2cm}} - \underline{\hspace{2cm}} -$$

(4)

10.2 A 12 kg block is being pulled along a rough horizontal surface with a force of 120N, which is at an angle of 55° to the horizontal. The block experiences a frictional force of 15N.

10.2.1 Calculate the acceleration of the block. (6)


$$a = \underline{\hspace{2cm}} - \underline{\hspace{2cm}} -$$

10.2.2 Without any calculation, state if the frictional forces will **INCREASE / DECREASE** or **STAY THE SAME**, if the pulling force is increased.
(Choose one) (1)

[11]

Question 11

An 8 kg wooden block is attached to a 2 kg wooden block by means of a weightless inelastic string which passes over a frictionless pulley. The block accelerates down a rough plane inclined at 20° to the horizontal as shown below.

The tension in the string is 21 N.

11.1 Draw a labeled force diagram of all the forces acting on the 8 kg block. (3)

11.2 By applying Newton's second law **separately to each block**, calculate the

11.2.1 The magnitude of the acceleration of the system

$$a = \underline{\hspace{2cm}} \underline{\hspace{2cm}}$$

11.2.2 The coefficient of frictional acting on the 8 kg block.

(round off to 3 decimal places) (8)

$$\mu_s = \underline{\hspace{2cm}} \{3 \text{ decimal places}\}$$