

Standard S8P5: I can obtain, evaluate, and communicate information about gravity, electricity, and magnetism as major forces acting in nature.

The Shocking Truth About Electricity & Electric Fields Video Notes

Learning Target #1 I can describe and _____ how electricity and _____ work.

Learning Target #2 I can _____ how _____ exist and how they exert _____ on objects even when they are not in _____ with them.

1. Electric charge is a physical property of particles or objects that causes them to _____ each other without _____. All electric charge is based on the _____ in atoms. A proton has a _____ electric charge, and an electron has a _____ electric charge.

2. Where are protons located? _____

Where are electrons located? _____

3. Electricity is the flow of _____ or _____.

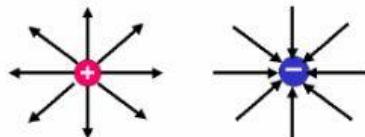
4. How do we get electricity? _____

5. When it comes to electric charges, _____ attract. So _____ and _____ particles attract each other.

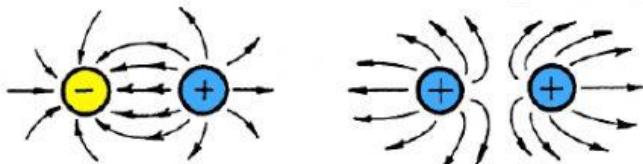
6. Why do electrons move around the nucleus? _____

Created By: Chivas & Jordan Spivey

Standard S8P5: I can obtain, evaluate, and communicate information about gravity, electricity, and magnetism as major forces acting in nature.


7. What is electric force? _____

What does the strength of electric force depend on? _____


8. Which has the greater force in the diagram above, particles on the left or right? _____. Explain why. _____

9. An _____ is a space around a _____ particle where the particle exerts _____ on other charged particles. Because of their _____, charged particles can exert _____ on each other without actually _____. Electric fields are generally represented by _____

11. Look at the diagram above, why are positive charges attracted to negative charges? _____

12. When charged particles are _____ enough to exert forces on each other, their electric fields _____

13. Look at the diagram above. What happens to the lines of force with different charged particles? _____

14. Look at the diagram above. What happens to the lines of force with like charged particles? _____

15. In summary, _____ charge is a physical property of particles or objects that causes them to, _____ or _____ each other without _____. Particles that have opposite charges _____ each other. Particles that have like charges _____ each other. The force of attraction or repulsion is called _____. An _____ is a space surrounding a _____ particle where the particle exerts _____ force. When charged particles are _____ enough to exert force on each other, their _____ interact.