Newton's Second Law If your amswer is not a whole number round to 2 decimals. No commas in the answer.

1.	ow much force is needed to accelerate a 1000-kg car at a rate of 3 m/s ² ?			
	answer	Units	F	
		N kg m/s²	ma	
2.	If a 70-kg swimmer pushes of a pool wall with a force of 250 N, at what rate			
	will the swimmer accelerate from the wall?			
	answer	Units	/'\	
	round to 2 decimals	N kg m/s ²	ma	
3.	A weightlifter raises a 200-kg barbell with an acceleration of 3 m/s². How			
	much force does the weightlifter use to raise the barbell.			
	answer	Units	/ \	
			m a	
		N kg m/s ²		
4.	A dancer lifts his partner above his head with an acceleration of 2.5 m/s ² . The			
	dancer exerts a force of 200 N. What is the mass of the partner?			
	answer	Units	\longrightarrow	
		N kg m/s ²	m a	
5.	Newton's second law of motion states that a(n) balanced unbalanced force			
	acting on an object causes it to accelerate according to the formula net force			
	= mass x distance acceleration. Which means the acceleration of the object			
	is directly proportional to the speed force and inversely (oppositely)			
	proportional to the mass.			
6.	6. The two factors that affect acceleration are: mass speed distance force			
	weight			
7.	Friction:			
	a. is when an object is not moving.			
	b. is when two objects rub against each other.			
	i friction a special type of sliding friction when			
	the object slides through a liquid or gas			
	c. is when the object rolls over another.			
		L II	LIVEWORKSHEETS	