MOTION

- 1. If the displacement of an object is proportional to square of time, then the object moves with:
- (a) Uniform velocity

(b) Uniform acceleration

(c) Increasing acceleration

- (d) Decreasing acceleration
- 2. From the given v-t graph, it can be inferred that the object is

(a) At rest

- (b) In uniform motion
- (c) Moving with uniform acceleration
- (d) In non-uniform motion
- **3.** Suppose a boy is enjoying a ride on a marry-go-round which is moving with a constant speed of 10 m/s. It implies that the boy is:
- (a) At rest

- (b) Moving with no acceleration
- (c) In accelerated motion
- (d) Moving with uniform velocity
- 4. A particle is moving in a circular path of radius r.

The displacement after half a circle would be:

- (a) Zero
- (b) nr
- (c) 2r
- (d) 2nr

iii. Average speed

- 5. Which of the following can sometimes be 'zero' for a moving body?
- i. Average velocity
 (a) Only (i) (
- (b) (i) and (ii) (c)
 - (c) (i) and (iv)
- Iv. Displacement (d) Only (iv)
- **6.** Which of the following statement is correct regarding velocity and speed of a moving body? (a) Velocity of a moving body is always higher than its speed
- (b) Speed of a moving body is always higher than its velocity
- (c) Speed of a moving body is its velocity in a given direction
- (d) Velocity of a moving body is its speed in a given direction
- **7.** When a car driver travelling at a speed of 10 m/s applies brakes and brings the car to rest in 20 s, then the retardation will be:
- (a) $+ 2 \text{ m/s}^2$
- (b) 2 m/s^2
- (c) 0.5 m/s^2
- $(d) + 0.5 \text{ m/s}^2$
- **8.** The speed time graph of a car is given here. Using the data in the graph calculate the total distance covered by the car.

