- 1. Which of the following does NOT represent an acid followed by its conjugate base?
- a) H₃O+ / H₂O
- b) HCN / CN-
- c) HCI / CI-
- d) HC₂H₃O₂ / OH-
- e) All are acids followed by their conjugate base
- 2. According to the Bronsted-Lowry definition, a base is
- a) a substance that increases the hydroxide ion concentration of a solution
- b) a substance that can accept a proton from an acid
- c) a substance that can donate an electron pair to the formation of a covalent bond
- d) a substance that increases the anion formed by the autoionization of the solvent
- e) a substance that donates a proton
- 3. The equilibrium constant for the reaction

A- + H+ <----> HA is called:

- a) Ka
- b) Kb
- c) 1/Ka
- d) Kw/Kb
- e) KwKa
- 4. At 0 degrees Celsius, the Kw for water is 1.2×10^{-15} . The pH of pure water at this temperature is
- a) 7.00
- b) 6.88
- c) 7.56
- d) 7.46

- e) none of these
- 5. Given HCN(aq) + HCO₃-(aq) <----> CN-(aq) + H₂CO₃(aq)

If K< 1, what is the strongest base in this system?

- a) HCN
- b) HCO₃-
- c) CN-
- d) H₂CO₃
- e) H₂O
- 6. The following acids are listed in order of decreasing acid strength in water.

HI > HNO₂ > CH₃COOH > HCIO > HCN

According to Bronsted-Lowry theory, which of the following ions is the weakest base?

- a) I
- b) NO₂-
- c) CH₃COO-
- d) CIO-
- e) CN-
- 7. Which of the following is an acid?
- a) HCOOH
- b) CH₃OH
- c) KOH
- d) NH₃
- e) CH₃NH₂
- 8. What is the strongest acid?
- a) HCIO₂
- b) HCIO₃
- c) HCIO₄
- d) HF

- e) HOCI
- 9. Which of the following reactions does not proceed significantly to the right in aqueous solution?
- a) HCI + H2O ----> H3O+ + CI
- b) H₃O+ + OH- ---> 2H₂O
- c) H₂O + HSO₄- ----> H₂SO₄ + OH⁻
- d) HCN + OH- ---> H2O + CN
- e) H₂SO₄ + H₂O ----> H₃O+ + HSO₄-
- 10. What is the [H⁺] in a solution which shows a pH of 2.30?
- a) 2.3M
- b) 11.7M
- c) 5.0×10^{-3} M
- d) $2.0 \times 10^{-12} M$
- e) none of these
- 11. What is the pH of a solution at 25 degrees Celsius in which [OH^{-}] = 3.4 x 10^{-5} M.
- a) 4.5
- b) 10.5
- c) 9.5
- d) 6.3
- e) none of these
- 12. What is the pH of a 10.0 M solution of HNO₃?
- a) 10
- b) 1.0
- c) 0
- d) -1.0
- e) none of these
- 13. Nitrous acid, HNO₂, has an ionization constant Ka = 4.0×10^{-4} . The pH of a 0.25 M HNO₂ solution is:

- a) 2.00
- b) 2.30
- c) 2.70
- d) 3.70
- e) none of these
- 14. In a solution prepared by dissolving 0.10 mole of an acid HX in enough water to make 1.00 L of solution, the pH is observed to 1.35. What is the Ka for this acid?
- a) 2.0 x 10⁻²
- b) 3.6 x 10⁻²
- c) 4.5 x 10⁻²
- d) 5.0×10^{-12}
- e) None of these

- 15. A 0.05 M aqueous solution of a weak monoprotic acid is 1.2% ionized at equilibrium at 25 degrees celsius. Ka for this acid is:
- a) 0.034
- b) 6.4 x 10⁻⁸
- c) 7.3 x 10⁻³³
- d) 29
- e) none of these
- 16. What is the pOH of a 0.10 M solution of Ba(OH)₂?
- a) 13.30
- b) 0.70
- c) 1.00
- d) 13.00
- e) none of these

- 17. The [OH-] in a 0.50 M pyridine solution (C_5H_5N ; Kb = 1.7 x 10-9) is:
- a) 0.50 M
- b) 2.9 x 10⁻⁵ M
- c) 1.8 x 10⁻⁹ M
- d) 3.3 x 10⁻¹⁰ M
- e) none of these
- 18. The equilibrium constant for the reaction

 $NH_4+ + OH^- < ---- > NH_3 + H_2O$ is:

- a) 1/Kb for NH₃
- b) 1/Ka for NH₄⁺
- c) Kw/Ka for NH₄⁺
- d) Kw/Kb for NH₃
- e) Kb for NH₃/Kw
- 19. What is the pH of a 0.05 M solution of ascorbic acid, Vitamin C(Ka1 = 7.9×10^{-5} ; Ka2= 1.6×10^{-12})
- a) 1.3
- b) 2.7
- c) 3.1
- d) 5.4
- e) 6.5
- 20. Given: HAc Ka = 1.8 x 10⁻⁵ H2CO3 Ka1= 4.3 x 10⁻⁷

 $Ka2 = 5.6 \times 10^{-11}$

Which of the following 0.01M solutions will have the highest pH?

- a) HAc
- b) NaAc
- c) Na₂CO₃
- d) H₂CO₃
- e) NaHCO₃

a) 6.2 x 10⁻²⁴ b) 6.2 x 10⁴ c) 1.6 x 10⁻⁵ d) 1.6 x 10⁻²³ e) none of these 22. Which of the following substances can be dissolved in water to give a basic solution? a) NH₄CI b) NaBr c) KF d) NaHSO₄ e) KNO₃ 23. What is the pH of a 1.0 M aqueous solution of NaCl? a) 7.0 b) greater than 7.0 c) less than 7.0 d) not enough information e) too tired to answer 24. What is the pH of a 1.0 M aqueous solution of KNO₂? a) 7.0 b) greater than 7.0 c) less than 7.0 d) not enough information 25. Which of the following is the STRONGEST Lewis acid? a) Na⁺

b) Al3+

21. If Ka for HCN is 6.2 x 10⁻¹⁰, what is Kb for CN⁻?

- c) CH3COO⁻ d) Mg²⁺
- e) CI-
- 26. All of the following species can function as Bronsted-Lowry bases in solution EXCEPT:
- a) H₂O
- b) NH₃
- c) S2-
- d) NH₄⁺
- e) HCO3
- 27. What is the pH of a 0.36M solution of sodium acetate?
- a) 9.15
- b) 4.85
- c) 2.59
- d) 11.41
- e) 7.00
- 28. Which of the following will NOT give an acid solution when dissolved in water?

Hint: Check section 14.10 in your book.

- a) K₂O
- b) P₂O₅
- c) CO₂
- d) NO₂
- e) SO₃
- 29. HCN is a weak acid (Ka = 6.2×10^{-10}) NH₃ is a weak base (Kb = 1.8×10^{-5}). A 1.0 M solution of NH₄CN would be
- a) strongly acidic
- b) weakly acidic
- c) neutral

- d) weakly basic
- 30. The equilibrium constant for this reaction is approximately 0.001.

 $HPO_4^{2-}(aq) + HCO_3^{-}(aq) <----> H_2PO_4^{-}(aq) + CO_3^{2-}(aq)$

Which is the strongest conjugate base in this reaction?

- a) HPO₄2-(aq)
- b) HCO₃-(aq)
- c) H₂PO₄-(aq)
- d) CO₃²-(aq)
- e) there is no base in this reaction
- 31. The equilibrium constant for this reaction is 3.6 x 10⁻⁷ OCI⁻(aq) + H₂O(I) <----> HOCI(aq) + OH⁻(aq) What is Ka for HOCI?
- a) 2.8 x 10⁻⁸
- b) 3.6 x 10⁻⁷
- c) 6.0 x 10⁻⁴
- d) 2.8 x 10⁶