DISPOSITIVOS, EQUIPOS, COMPONENTES ELECTRÓNICOS

2,2 LA RESISTENCIA ELECTRICA

Las resistencias que forman parte de los circuitos eléctricos, no obstante, suelen ser de mayor envergadura y mayor potencia.

Su principal función será la de aprovechar la energía eléctrica que las alimenta para convertirla en trabajo útil, generalmente disipando calor u ofreciendo energía luminosa.

Algunos ejemplos equipos cuyo funcionamiento se basa en resistencias:

Hornos

Soldadores eléctricos

Radiadores

Lámparas incandescentes

Las resistencias electrónicas, se utilizan para reducir o regular el valor de la intensidad de corriente o con el objetivo fijar la tensión a un determinado valor.

Su unidad de medida es el ohmio

ACTIVIDADES

- 1.- ¿Qué función puede cumplir una resistencia dentro de un circuito eléctrico?
- a) Disipar calor
- b) Convertir la energía eléctrica en energía luminosa.
- c) Las dos respuestas anteriores son correctas.

2.2.1 LA LEY DE OHM

La relación entre la tensión, la intensidad de corriente y la resistencia lo determina una fórmula muy sencilla

$$(U)V = I.R$$

Tensión o voltaje (U) o(V)

La pila o batería suministra la energía necesaria para que las cargas eléctricas circulen por un circuito

La tensión o el voltaje Es la energía por unidad que proporciona una pila o una fuente de alimentación.

Se mide en Voltios

<u>Pincha en el siguiente enlace</u> para conocer más sobre el voltaje ¿Qué es el voltaje?

La Intensidad (I)

La intensidad de corriente (I) es la cantidad de carga eléctrica que atraviesa la sección de un conductor en un segundo. Se mide en amperios (A).

Pincha este enlace

Resistencia (R)

<u>La Resistencia eléctrica</u> (R) indica la oposición que presentan los conductores al paso de la corriente eléctrica y se mide en ohmios .

Ley de Ohm relaciona las magnitudes de voltaje, resistencia e intensidad

ACTIVIDADES

- 1.- La ley de Ohm establece que
- a) U= R I
- b) I=U R
- c) R= U I
- 2- Si disponemos de una batería de 1,5 V y conectamos una resistencia de $10~\Omega$, ¿qué intensidad circula por dicho receptor? Recuerda que:

$$I = \frac{V}{R}$$

- 3.- ¿Y si conectamos la misma resistencia a otra fuente de tensión, esta vez con un valor de 230 V?
- 4.- Relaciona cada término con su unidad de medida

RESISTENCIA

(A) Amperios

INTENSIDAD

(V) Voltios

TENSIÓN

(Ω) Ohmios