GRAPHING LINEAR EQUATIONS

SLOPE INTERCEPT FORM: y = mx + b

SLOPE:

Represented by m in the equation

rise run

Y-INTERCEPT:

Represented by *b* in the equation

Where line crosses the y axis

(0,b)

USING SLOPE:

Positive:

 $\frac{rise}{run} \stackrel{\text{How far UP}}{\longleftarrow}$

Negative:

How far RIGHT run

STEPS:

- 1. Plot the y-intercept
- 2. Use the slope to plot more points

I'll do algebra, I'll
do trig, and I'll
even do statistics,
but
graphing is where I
draw the line!

OH NO! YOU RAN OUT OF GRAPH, NOW WHAT?

- 1. Don't panic
- 2. Go back to the <u>y-intercept</u>
- 3. Go in the opposite directions for slope Positive: down and left
 Negative: up and left

REMEMBER:

$$y = x + 8 \rightarrow y = \frac{1}{1}x + 8$$

$$y = 2x \rightarrow y = \frac{2}{1}x + 0$$

GRAPHING LINEAR EQUATIONS

Example: Graphing Equations with Positive Slope

$$y = \frac{1}{4}x + 2$$

Step 1: Plot the y intercept

$$y$$
-int = 2

Step 2: Use the slope to create more point from the y intercept

Slope =
$$\frac{1}{4}$$

GRAPHING LINEAR EQUATIONS

Example: Graphing Equations with Negative Slope

$$y = -\frac{2}{3}x + 5$$

$$y - int = 5$$

Slope =
$$-\frac{2}{3}$$

