

Divisibility Rules

Name: _____

Date: _____

Divisible By

"Divisible By" means "when you divide one number by another the result is a [whole number](#)"

Examples:

14 **is** divisible by 7, because $14 \div 7 = 2$ **exactly**

15 is **not** divisible by 7, because $15 \div 7 = 2 \frac{1}{7}$ (the result is **not** a whole number)

0 **is** divisible by 7, because $0 \div 7 = 0$ **exactly** (0 is a whole number)

"Divisible by" and "can be exactly divided by" mean the same thing

The Divisibility Rules

These rules let you test if one number is divisible by another, without having to do too much calculation!

Example: is 723 divisible by 3?

We could try dividing 723 by 3

Or use the "3" rule: $7+2+3=12$, and $12 \div 3 = 4$ exactly **Yes**

*Note: Zero is divisible by **any number** (except by itself), so gets a "yes" to all these tests.*

Type "yes" or "no" if the number 3 546 divisible by 9? _____

1

Any integer (not a fraction) is divisible by 1

2

The last digit is even (0,2,4,6,8)

→ 128 Yes

→ 129 No

- Which number/s is/are divisible by 2?

345 488 300

3

The sum of the digits is divisible by 3

→ 381 ($3+8+1=12$, and $12 \div 3 = 4$) Yes

→ 217 ($2+1+7=10$, and $10 \div 3 = 3 \frac{1}{3}$) No

- Which number/s is/are divisible by 3?

4213 291 3091

This rule can be repeated when needed:

→ 99996 ($9+9+9+9+6 = 42$, then $4+2=6$) Yes

4

The last 2 digits are divisible by 4

→ 1312 is $(12 \div 4 = 3)$ Yes

→ 7019 is not $(19 \div 4 = 4 \frac{3}{4})$ No

A quick check (useful for small numbers) is to **half** the number twice and the result is still a whole number.

→ $12/2 = 6$, $6/2 = 3$, 3 is a whole number. Yes

→ $30/2 = 15$, $15/2 = 7.5$ which is not a whole number. No

- Which number is divisible by 4?

78 715; 916; 32 449

5

The last digit is 0 or 5

→ 175 Yes

→ 809 No

- Which number is NOT divisible by 5?

51 763; 374 950; 300 005

6

Is even and is divisible by 3 (it passes both the 2 rule and 3 rule above)

→ 114 (it is even, and $1+1+4=6$ and $6 \div 3 = 2$) **Yes**

→ 308 (it is even, but $3+0+8=11$ and $11 \div 3 = 3 \frac{2}{3}$) **No**

7

Double the last digit and subtract it from a number made by the other digits. The result must be divisible by 7. (We can apply this rule to that answer again)

→ 672 (Double 2 is 4, $67-4=63$, and $63 \div 7=9$) **Yes**

→ 105 (Double 5 is 10, $10-10=0$, and 0 is divisible by 7) **Yes**

→ 905 (Double 5 is 10, $90-10=80$, and $80 \div 7=11 \frac{3}{7}$) **No**

- Is the number **214** divisible by 6, 7 or neither? _____
- Is the number **3101** divisible by 6, 7 or neither? _____

8

The last three digits are divisible by 8

→ **109816** ($816 \div 8 = 102$) **Yes**

→ **216302** ($302 \div 8 = 37 \frac{3}{4}$) **No**

A quick check is to **half** three times and the result is still a whole number:

→ $816/2 = 408, 408/2 = 204, 204/2 = 102$ **Yes**

→ $302/2 = 151, 151/2 = 75.5$ **No**

- Half the following number three times to determine if it is divisible by 8:

$$3986/2 = \underline{\hspace{2cm}}$$

$$\underline{\hspace{2cm}}/2 = \underline{\hspace{2cm}}$$

$$\underline{\hspace{2cm}}/2 = \underline{\hspace{2cm}}$$

Is 3986 divisible by 8? Yes No

9

The sum of the digits is divisible by 9

(Note: This rule can be repeated when needed)

→ **1629** ($1+6+2+9=18$, and again, $1+8=9$) **Yes**

→ **2013** ($2+0+1+3=6$) **No**

- Is the number 457 983 divisible by 9?

$$4+5+7+9+8+3 = \underline{\hspace{2cm}}$$

$$\underline{\hspace{2cm}} + \underline{\hspace{2cm}} = \underline{\hspace{2cm}}$$

Is 457 983 divisible by 9? Yes No

10

The number ends in 0

220 Yes

221 No

- Which number is not divisible by 10?

305

600

710

309

11

Add and subtract digits in an alternating pattern (add digit, subtract next digit, add next digit, etc). Then check if that answer is divisible by 11.

1364 (+1-3+6-4 = 0) Yes

913 (+9-1+3 = 11) Yes

3729 (+3-7+2-9 = -11) Yes

987 (+9-8+7 = 8) No

- Add and subtract the digits in the alternating pattern to determine if the number 346 987 522 is divisible by 11:

$$+ \underline{\quad} - \underline{\quad} + \underline{\quad} - \underline{\quad} + \underline{\quad} - \underline{\quad} + \underline{\quad} = \underline{\quad}$$

Is the number 346 987 522 divisible by 11?

Yes

No

12

The number is divisible by both 3 **and** 4 (it passes both the 3 rule and 4 rule above)

648

→ (By 3? $6+4+8=18$ and $18 \div 3=6$ Yes)

(By 4? $48 \div 4=12$ Yes)

Both pass, so **Yes**

524

→ (By 3? $5+2+4=11$, $11 \div 3=3 \frac{2}{3}$ No)

(Don't need to check by 4) **No**

- Does the number 984 pass both the 3 rule and 4 rule of divisibility? Yes No
(Show Your working below)

984: by 3 →

984: by 4 →