Mixed Wave Calculation Practice

Use the examples below to guide you through completing this assignment

Variables	Units
c: Speed of Light* (constant)	$3.00 \times 10^8 \frac{m}{s}$ (meters per sec)
f: Frequency	Hz or s ⁻¹ (Hertz or seconds ⁻¹)
λ: wavelength	m(meters)
h: Planck's	6.63 x 10 ⁻³⁴ J•s (joules x sec)
Constant*	410007 C/0964
E: energy	J (joules)

Formulas
C= f λ
E=hf
$E = \frac{hc}{\lambda}$

Directions: In each empty box fill with the correct information INCLUDING the units.

Example 1) Green lights on a traffic light have a wavelength of $5.23 \times 10^{-7} \text{m}$. What is the frequency?

Given	Formula	Work	Answer
λ = 5.23 x 10^-7 m	$C=f\lambda$ $C/\lambda=f$	3.00x 10^8 m/s	5.74 x 10^14 s^-1
C= 3.00 x 10^8 m/s		5.23 x 10^-7 m	

Example 2) Find the energy of a red photon with a frequency of $4.57 \times 10^{14} Hz$.

Given	Formula	Work	Answer	
E = ?	E=hf	6.63 x 10^-34 Js		
f = 4.57 x 10^14 Hz		X 10014 U.	3.03 x 10^-19 J	
H=6.63 x 10^-34 Js		4.57 x 10^14 Hz]	

1. What is the energy of a $7.66 \times 10^{14} \text{ s}^{-1}$ wave?

Given	Formula	Work	Answer

2. What is the frequency of a wave carrying $8.35 \times 10^{-18} \, \text{J}$ of energy?

Formula	Work	Answer
	Formula	Formula Work

3. What is the frequency of a wave having a wavelength of 1.78×10^{-15} m?

Give	n	Formula	Work	Answer	

4. What is the wavelength of a 3.12×10^{18} Hz wave?

Given	Formula	Work	Answer

5. What is the wavelength of wave having an energy of 1.31 x $10^{-22} J$?

Formula	Work	Answer
	Formula	Formula Work