Ba	lanci	ina	Act

0 =

Name _____

Atoms are not	or	during	a chemical	reaction.
Scientists know that there must be the	numb	er of atoms on	each	of
the To balance the chemi	ical equation, you	must add		_ in front
of the chemical formulas in the equation.	You cannot	or	subscri	pts!
1) Determine number of atoms for each element.	Mg +	O ₂ →	MgO	
2) Pick an element that is not equal on both sides of the equation.	Mg =		Mg =	
 Add a coefficient in front of the formula with that element and adjust your counts. 	O =		O =	
4) Continue adding coefficients to get the same number of atoms of each element on each side.				
Try these:				
\square Ca + \square O ₂ \longrightarrow \square CaO				
Ca = Ca =				
O =				
$N_2 + H_2 \rightarrow NH_3$				
N = N =				
H = H =				
$\square Cu_2O + \square C \rightarrow \square Cu + [$	CO ₂			
Cu = Cu =	=			
O = O =				
C = C =				
H = H =				

O =

Balancing Act Practice

Name _____

Balance each equation. Be sure to show your lists! Remember you cannot add subscripts or place coefficients in the middle of a chemical formula.

1. Na + MgF₂
$$\rightarrow$$
 NaF + Mg

2.
$$Mg + HCl \rightarrow MgCl_2 + H_2$$

3.
$$Cl_2 + KI \rightarrow KCl + I_2$$

5. Na +
$$O_2$$
 \rightarrow Na₂O

7.
$$K + Cl_2 \rightarrow KCl$$

Challenge: This one is tough!

$$C_2H_6 + O_2 \rightarrow CO_2 + H_2O$$

MgO

Mg =

O =

Atoms are not **CREATED** or **DESTROYED** during a chemical reaction. Scientists know that there must be the **SAME** number of atoms on each **SIDE** of the **EQUATION**. To balance the chemical equation, you must add **COEFFICIENTS** in front of the chemical formulas in the equation. You cannot **ADD** or **CHANGE** subscripts!

O =

19 19 19 - 10 19 19 19 19 19 19 19 19 19 19 19 19 19	Determine number of atoms element.	$Mg + O_2$	3
		Mo =	

Step 2: Pick an element that is not equal on both sides of the equation.

Step 3: Add a coefficient in front of the formula with that element and adjust your counts.

Step 4: Continue adding coefficients to get the same number of atoms of each element on each side.

Try these:

Ty these.	
Ca + O2	→ CaO
Ca =	Ca =
O =	O =
$N_2 + H_2$	→
N =	N =
H =	H =
Cu ₂ O +	$C \rightarrow \Box Cu + \Box CO_2$
Cu =	Cu =
O =	O =
C =	C =
	$H_2O + O_2$
H =	H =
O =	O =

T. Trimpe 2006 http://sciencespot.net/