Euclid's division lemma states that for positive integers a and b, there exist unique

Multiple choice questions

	integers q and r suc	th that $a = bq + r$, wh	ere r must satisfy.				
	(1) $1 < r < b$	(2) $0 < r < b$	(3) $0 \le r < b$	$(4) 0 < r \le b$			
2.	Using Euclid's division lemma, if the cube of any positive integer is divided by 9 then the possible remainders are						
	(1)0,1,8	(2) 1, 4, 8	(3) 0, 1, 3	(4)1,3,5			
3.	If the HCF of 65 and 117 is expressible in the form of $65m-117$, then the value of m is						
	(1)4	(2)2	(3) 1	(4)3			
4.	The sum of the exponents of the prime factors in the prime factorization of 1729 is						
	(1) 1	(2) 2	(3) 3	(4) 4			
5.	The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is						
	(1) 2025	(2) 5220	(3) 5025	(4) 2520			
6.	$7^{4k} \equiv \underline{\hspace{1cm}} \pmod{100}$						
	(1)1	(2) 2	(3) 3	(4) 4			
7.	Given $F_{\rm 1}=1$, $F_{\rm 2}=3$ and $F_{\rm n}=F_{\rm n-1}+F_{\rm n-2}$ then $F_{\rm 5}$ is						
	(1)3	(2)5	(3)8	(4)11			
8.		t term of an arithmetic progression is unity and the common difference is 4. of the following will be a term of this A.P.					
	(1) 4551	(2) 10091	(3) 7881	(4) 13531			
9.	If 6 times of 6 th term (1) 0	of an A.P. is equal to 7 ti (2) 6	mes the 7 th term, then t	he 13 th term of the A.P. is (4) 13			
10.	An A.P. consists of 31 terms. If its 16^{th} term is m , then the sum of all the terms of this A.P. is						
	(1) 16 m	(2) 62 m	(3) 31 m	(4) $\frac{31}{2}$ m			
1.	In an A.P., the first term is 1 and the common difference is 4. How many terms of the A.P. must be taken for their sum to be equal to 120?						
	(1) 6	(2) 7	(3) 8	(4) 9			
2.	If $A=2^{65}$ and $B=2^{64}+2^{63}+2^{62}++2^{0}$ which of the following is true?						
	(1) B is 2^{64} more than A		(2) A and B are equal				
	(3) B is larger than	A by 1	(4) A is larger than	B by 1			