Resolución No. MINEDUC-SEDMQ-2019-00006-R

NOMBRE.			
Determine l	los vértices, de la reg	ión factible dadas las si	guientes restricciones.
$3x + 2y \le$	$6 x \ge 0$		
$-2x + 4y \le$	$y \ge 0$		
Sistemas de	ecuaciones:		
$\begin{cases} 3x + 2y = \\ -2x + 4y \end{cases}$	= 6 = 8	$\begin{cases} 3x + 2y = 6 \\ x = 0 \end{cases}$	$\begin{cases} -2x + 4y = 8\\ x = 0 \end{cases}$
$A(\frac{1}{2},$	9/4)	B(O, 3)	C(0 , 2)
$\begin{cases} 3x + 2y = \\ y = 0 \end{cases}$	6	$\begin{cases} -2x + 4y = 8\\ y = 0 \end{cases}$	$\begin{cases} x = 0 \\ y = 0 \end{cases}$
D(2 ,	0)	E(-4 ,0)	F(0 , 0)
	$3x + 2y \le 6$	$-2x + 4y \le 8$	$x \ge 0$ $y \ge 0$
$\left(\frac{1}{2},\frac{9}{4}\right)$			
(0,3)			
(0,2)			

Un asiduo cliente de una florería necesita para su fiesta de boda no menos de 100 claveles y 140 rosas. La florería dispone de dos tipos de diseños para estos eventos: el arreglo de mesa tipo bandeja, con 3 claveles y 2 rosas, y el arreglo de mesa tipo jarrón, con 2 claveles y 5 rosas. El arreglo floral tipo bandeja cuesta \$12, mientras que el arreglo tipo jarrón cuesta \$15. El cliente desea la mayor cantidad de flores en sus arreglos, pero al menor precio posible. Calcula cuántos arreglos debe pedir.

F(0,0)

Lea el siguiente enunciado y determine sus datos en la siguiente tabla:

	DISEÑOS				
	BANDEJA	JARRON	DISPONIBILIDAD		
CLAVELES					
ROSAS					
COSTO					
FUNCION OBJETIVO	F(x,y) =	N			

Lea el siguiente enunciado y resuelva el siguiente ejercicio de problemas de fábricas de bicicletas: F1 y F2. transporte

Dos fábricas de bicicletas: F1 y F2, producen respectivamente 500 y 800 bicicletas que deben distribuirse a tres centros de ventas C1, C2 y C3 en cantidades de 450; 300 y 550 unidades respectivamente. El costo del transporte, hasta el punto de venta está dado por la siguiente tabla:

C1 C2 C3 F1 \$6 \$8 \$9

\$8

Calcula la cantidad de bicicletas que deben transportarse desde cada fábrica a cada centro para que el transporte resulte lo más económico posible.

\$6

\$10

Centro de venta/ Fabrica	C1	C2	C3	TOTAL
F1	x	у	500 - x - y	500
F2	450 - x	300 – y	50 + x + y	800
Total	450	300	550	1300

F2

Restricciones:

$$x \ge 0$$
; $y \ge 0$; $450 - x \ge 0$; $300 - y \ge 0$; $500 - x - y \ge 0$; $50 + x + y \ge 0$

Determine la función objetivo:

$$F(x,y) = \underline{\hspace{1cm}} x + \underline{\hspace{1cm}} y + \underline{\hspace{1cm}} (500 - x - y) + \underline{\hspace{1cm}} (450 - x) + \underline{\hspace{1cm}} (300 - y) + \underline{\hspace{1cm}} (50 + x + y)$$

F(x,y) =