Practice for Test: Scientific Notation and International System Units (SI)

I.	Perform	each co	onversion	using	unit	factoring.	
----	---------	---------	-----------	-------	------	------------	--

1.	300mL=	L
2.	6.2kg=	g
3.	23m=	cm
4.	0.127g=	mg
5.	0.32m=	km

II. Express each number in scientific notation

Example 0.0096	9.6 x 10^-3
6. 0.0000307	
7. 2,000	
8. 0.30	
9. 3,458,000	
10. 0.00186	

III.	Fill in the	blank for	each premise	
------	-------------	-----------	--------------	--

11.	The	is the unit of time in the SI System.
12.	The unit of	f mass commonly used in the laboratory is the
13.	The space	occupied by an object is the
14.	One-hund	redth of a meter is written as a
15.	A prefix m	eaning one thousand standard unit is
16.	Which of t Australia?	he following units would we use to measure the distance to

