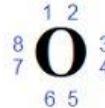


Electron Pattern


3. Repeat the process for the next three elements.

A. Oxygen



Protons _____ Neutrons _____ Electrons _____

Bohr Model

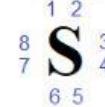
Dot Diagram

Family _____ Period _____

[View a periodic Table](#)

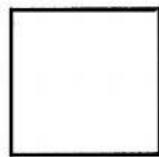
[Check the dot diagram](#)

B. Sulfur

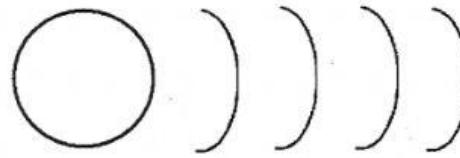


Protons _____ Neutrons _____ Electrons _____

Bohr Model


Dot Diagram

Family _____ Period _____


[Check the dot diagram](#)

C. Selenium

Protons _____ Neutrons _____ Electrons _____

Bohr Model

Dot Diagram

Family _____ Period _____

[Check the dot diagram](#)

1. What do the models of these three elements have in common? _____

2. What pattern in location can you find in the periodic table? _____

3. What is the name of the electron located on the outside energy level? _____

4. What does the pattern and the number of valence electron have in common? _____