


Name: _____
 Program, Year & Section: _____

Score: _____
 Date: _____

Vector Multiplication

Given the following vectors: (a) identify their correct diagrams, and (b) write them in unit-vector notation form.

$\vec{A} = 80 \text{ m, } 20^\circ \text{ N of W}$
 $\vec{B} = 65 \text{ m, E}$
 $\vec{C} = 90 \text{ m, } 60^\circ \text{ S of E}$
 $\vec{D} = 55 \text{ m, W}$

Vector	Diagram	Unit Vector Notation
\vec{A}		
\vec{B}		
\vec{C}		
\vec{D}		

Using the vectors above, find the following:

$\mathbf{A} \cdot \mathbf{B}$	$\mathbf{A} \cdot \mathbf{B} = AB \cos \theta$ $= (\quad)(\quad) \cos \quad {}^\circ$ $= \quad \quad \quad \text{m}^2$
	$\mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y + A_z B_z$ $= (\quad)(\quad) + (\quad)(\quad) + (\quad)(\quad)$ $= \quad + \quad + \quad$ $= \quad \quad \quad \text{m}^2$
$\mathbf{B} \times \mathbf{A}$	$\mathbf{B} \times \mathbf{A} = BA \sin \theta$ $= (\quad)(\quad) \sin \quad {}^\circ$ $= \quad \quad \quad \text{m}^2, \text{ along the } \quad \text{-axis}$
	$\mathbf{B} \times \mathbf{A} = i \begin{vmatrix} B_y & B_z \\ A_y & A_z \end{vmatrix} - j \begin{vmatrix} B_x & B_z \\ A_x & A_z \end{vmatrix} + k \begin{vmatrix} B_x & B_y \\ A_x & A_y \end{vmatrix}$ $= i \quad \quad \quad - j \quad \quad \quad + k \quad \quad \quad$ $= i \{ (\quad)(\quad) - (\quad)(\quad) \} - j \{ (\quad)(\quad) - (\quad)(\quad) \} +$ $k \{ (\quad)(\quad) - (\quad)(\quad) \}$ $= \quad i \quad \quad j \quad \quad k$

D•C	$D \cdot C = DC \cos \theta$ $= (\quad)(\quad) \cos \quad {}^\circ$ $= \quad \quad \quad \text{m}^2$
	$D \cdot C = D_X C_X + D_Y C_Y + D_Z C_Z$ $= (\quad)(\quad) + (\quad)(\quad) + (\quad)(\quad)$ $= \quad + \quad + \quad$ $= \quad \quad \quad \text{m}^2$
Cx D	$C \cdot D = CD \sin \theta$ $= (\quad)(\quad) \sin \quad {}^\circ$ $= \quad \quad \quad \text{m}^2, \text{ along the } \quad \text{-axis}$
	$C \times D = i \begin{vmatrix} C_Y & C_Z \\ D_Y & D_Z \end{vmatrix} - j \begin{vmatrix} C_X & C_Z \\ D_X & D_Z \end{vmatrix} + k \begin{vmatrix} C_X & C_Y \\ D_X & D_Y \end{vmatrix}$ $= i \begin{vmatrix} \quad & \quad \\ \quad & \quad \end{vmatrix} - j \begin{vmatrix} \quad & \quad \\ \quad & \quad \end{vmatrix} + k \begin{vmatrix} \quad & \quad \\ \quad & \quad \end{vmatrix}$ $= i \{(\quad)(\quad) - (\quad)(\quad)\} - j \{(\quad)(\quad) - (\quad)(\quad)\} + k \{(\quad)(\quad) - (\quad)(\quad)\}$ $= \quad i \quad \square \quad j \quad \square \quad k$