Name: Stoichiometry					2 KCIO₃	620. g KClO₃
1 KC	IO ₃	_KCI +	_0₂		2 KCI	3.54 g O ₂
a) When 620. g of Potassium chlorate decomposes, how many moles of KCI will be formed?					2 KCI 2 KCIO ₃	2.85 mol KClO ₃
moles of RCI w	iii be formed) 	=	mol KCl	2 KCl 3 O₂	122.55 g 1 mole
			_		3 O ₂ 2 KCl	<u>1 mole</u> 122.55 g
b) How many grams of O ₂ are produced from the decomposition of 2.85 moles of KClO ₃ ?					3 O ₂ 2 KClO3	32.00 g 1 mole
			_ =	g O ₂	2 KCIO ₃ 3 O ₂	<u>1 mole</u> 32.00 g
					3 02	74.55 g 1 mole
c) If 3.54 g of oxygen was produced. What mass of potassium chlorate was used?						1 mole 74.55 g
				= g KClO ₃		
- <u>I</u>					8.46 x 10 ²²	4 NH ₃ 7 O ₂
2. 4 NH ₃ + 7 O ₂ > 4 NO ₂ + 6 H ₂ O a) What mass of NO ₂ can be produced from 8.46 x 10 ²² molecules of oxygen?					molecules 6.022 x 10 ²³	<u>7 O₂</u> 4 NH₃
					molecules 1 mole	4 NO ₂ 7 O ₂
				= g NO ₂	1 mole 6.022 x 10 ²³ molecules	7 O ₂ 4 NO ₂
b) 23.7 g of NH	3 could prod	95 g O ₂	_6H ₂ O_ 4 NH₃			
				= H ₂ O molecules	23.7 g NH ₃ 46.01 g 1 mole	4 NH ₃ 6 H ₂ O
ļ	ļ				1 mole 46.01 g	17.04 g 1 mole
c) How many n oxygen?	noles of NH ₃	are needed t	to react v	with 95 g of	32.00 g 1 mole	1 mole 17.04 g
			= r	nol NH ₃	1 mole 32.00 g	18.02 g 1 mole
Į	L				BLIVE	1 mole WORKSHEETS