| Name:
Stoichiometry | | | | | 2 KCIO₃ | 620. g KClO₃ | |---|--------------------------|-----------------|------------------------------|------------------------------|--|---| | 1 KC | IO ₃ | _KCI + | _0₂ | | 2 KCI | 3.54 g O ₂ | | a) When 620. g of Potassium chlorate decomposes, how many moles of KCI will be formed? | | | | | 2 KCI
2 KCIO ₃ | 2.85 mol KClO ₃ | | moles of RCI w | iii be formed |)
 | = | mol KCl | 2 KCl
3 O₂ | 122.55 g
1 mole | | | | | _ | | 3 O ₂
2 KCl | <u>1 mole</u>
122.55 g | | b) How many grams of O ₂ are produced from the decomposition of 2.85 moles of KClO ₃ ? | | | | | 3 O ₂
2 KClO3 | 32.00 g
1 mole | | | | | _ = | g O ₂ | 2 KCIO ₃
3 O ₂ | <u>1 mole</u>
32.00 g | | | | | | | 3 02 | 74.55 g
1 mole | | c) If 3.54 g of oxygen was produced. What mass of potassium chlorate was used? | | | | | | 1 mole
74.55 g | | | | | | = g KClO ₃ | | | | - <u>I</u> | | | | | 8.46 x 10 ²² | 4 NH ₃
7 O ₂ | | 2. 4 NH ₃ + 7 O ₂ > 4 NO ₂ + 6 H ₂ O a) What mass of NO ₂ can be produced from 8.46 x 10 ²² molecules of oxygen? | | | | | molecules
6.022 x 10 ²³ | <u>7 O₂</u>
4 NH₃ | | | | | | | molecules
1 mole | 4 NO ₂
7 O ₂ | | | | | | = g NO ₂ | 1 mole
6.022 x 10 ²³
molecules | 7 O ₂
4 NO ₂ | | b) 23.7 g of NH | 3 could prod | 95 g O ₂ | _6H ₂ O_
4 NH₃ | | | | | | | | | = H ₂ O molecules | 23.7 g NH ₃
46.01 g
1 mole | 4 NH ₃
6 H ₂ O | | ļ | ļ | | | | 1 mole
46.01 g | 17.04 g
1 mole | | c) How many n
oxygen? | noles of NH ₃ | are needed t | to react v | with 95 g of | 32.00 g
1 mole | 1 mole
17.04 g | | | | | = r | nol NH ₃ | 1 mole
32.00 g | 18.02 g
1 mole | | Į | L | | | | BLIVE | 1 mole
WORKSHEETS |