| Name:
Stoichiometry | | | |--|----------------------------------|----------| | 1 Fe + O₂ → Fe₂O₃ | | | | a) How many moles of iron would be needed to react with 3.82 moles of oxygen? | | | | = mol Fe | | | | b) What mass of iron (III) oxide can be produced from 1.35 moles Fe? | | | | = g Fe2O3 | | | | c) How many moles of O_2 are needed to produce 347 g of Fe_2O_3 ? | | | | = mol O ₂ | | | | d) What ${\it mass}$ of iron (III) oxide can be produced from 135 ${\it g}$ Fe? | | | | = g Fe2O3 | | | | | | | | 2 C ₄ H ₁₀ + O ₂ > CO ₂ + H ₂ O | | | | a) When 6.24 moles of O ₂ are reacted, how many moles of | 6.24 mol O ₂ | 070 | | carbon dioxide are produced? | 10 H₂O | 58.14 g | | = mol CO ₂ | 13 O ₂ | 44.01 g | | | 2 C ₄ H ₁₀ | 32.00 g | | b) How many grams of C ₄ H ₁₀ would produce 88 grams of water? | 8 CO ₂ | 18.02 g | | | 1 mole | 6.022E23 | | $= g C_4 H_{10}$ | 1 mole | |