| Name:
Stoichiometry | | | |--|----------------------------------|-----------------------| | 1 Fe + O₂ → Fe₂O₃ | | | | a) How many moles of iron would be needed to react with 3.82 moles of oxygen? | | | | = mol Fe | | | | | | | | b) What mass of iron (III) oxide can be produced from 13.5 moles Fe? | | | | = g Fe2O3 | | | | | | | | c) How many moles of O_2 are needed to produce 34.7 g of Fe_2O_3 ? | | | | = mol O ₂ | | | | | | | | d) What mass of iron (III) oxide can be produced from 135 g Fe? | | | | = g Fe ₂ O ₃ | | | | | | | | 2C ₄ H ₁₀ +O ₂ >CO ₂ +H ₂ O | | | | a) When 0.624 moles of O ₂ are reacted, how many moles of | 0.624 mol O ₂ | 88 g H ₂ O | | carbon dioxide are produced? | 10 H₂O | 58.14 g | | = mol CO ₂ | 13 O ₂ | 44.01 g | | | 2 C ₄ H ₁₀ | 32.00 g | | b) How many grams of C ₄ H ₁₀ would produce 88 grams of water? | 8 CO ₂ | 18.02 g | | $= g C_4 H_{10}$ | 1 mole | 6.022E23 | | | 1 mole | | ## **#LIVEWORKSHEETS** | moles of KCl will | | | | | (6) | | | |---|--|---------------------|------------------|----------------------|---|---|--| | | <u>u</u> | | _ = | mol k | (CI | | | | | | | | | | | | | o) How many gra
2.85 moles of K0 | | e produced | I from the | e decor | nposition o | f | | | | | | _ = | g O ₂ | | | | | | | | _ | | | | | | c) If 3.54 g of ox | | duced. W | hat mas | s of po | tassium | | | | | | | | = | g KClO₃ | 1. 4 NH ₃ + | 7 0,> 4 | NO ₂ + 6 | H₂O | | | 4 NH ₃ | 7 O ₂ | | | 7 O ₂ > 4 | | | 5 x 10 ²² | | 4 NH ₃ | _ | |) What mass of | NO ₂ can be p | | | 5 x 10 ²² | | 4 NH ₃ | 7 O ₂ | |) What mass of | NO ₂ can be p | | | 5 x 10 ²² | | 4 NH ₃ 4 NO ₂ | 7 O ₂ | |) What mass of | NO ₂ can be p | | | 5 x 10 ²² | g NO ₂ | 4 NH ₃ 4 NO ₂ 8.46 x 10 ²² | 7 O ₂
6 H ₂ O | |) What mass of | NO ₂ can be p | | | | | 4 NH ₃ 4 NO ₂ 8.46 x 10 ²² | 7 O ₂ 6 H ₂ O molecules O | | n) What mass of nolecules of ox | NO₂ can be pygen? | produced f | rom 8.46 | _ = | g NO ₂ | 4 NH ₃ 4 NO ₂ 8.46 x 10 ²² 6.022 x 10 ² | 7 O ₂ 6 H ₂ O molecules O molecules | |) What mass of
nolecules of ox | NO₂ can be pygen? | produced f | rom 8.46 | _ = | g NO₂
f H₂O? | 4 NH ₃ 4 NO ₂ 8.46 x 10 ²² 6.022 x 10 ² 1 mole | 7 O ₂ 6 H ₂ O molecules O molecules 17.04 g | | n) What mass of nolecules of ox | NO₂ can be pygen? | produced f | rom 8.46 | _ =
cules o
= | g NO ₂ | 4 NH ₃ 4 NO ₂ 8.46 x 10 ²² 6.022 x 10 ² 1 mole 1 mole | 7 O ₂ 6 H ₂ O molecules O molecules 17.04 g 46.01 g | | a) What mass of
nolecules of ox | NO₂ can be pygen? | produced f | rom 8.46 | _ =
cules o
= | $g NO_2$ $f H_2O$? | 4 NH ₃ 4 NO ₂ 8.46 x 10 ²² 6.022 x 10 ² 1 mole 1 mole 1 mole | 7 O ₂ 6 H ₂ O molecules O molecules 17.04 g 46.01 g 18.02 g | | a) What mass of molecules of ox | NO ₂ can be pygen? could produce | e how mar | ny mole o | =
cules o | $g NO_2$
$f H_2O$?
H_2O
molecules | 4 NH ₃ 4 NO ₂ 8.46 x 10 ²² 6.022 x 10 ² 1 mole 1 mole 1 mole 1 mole | 7 O ₂ 6 H ₂ O molecules O: molecules 17.04 g 46.01 g 18.02 g 32.00 g | | 4. 4 NH ₃ + a) What mass of molecules of ox b) 23.7 g of NH ₃ c) How many molecules of oxygen? | NO ₂ can be pygen? could produce | e how mar | ny mole o | =
cules o | g NO ₂ f H ₂ O? H ₂ O molecules | 4 NH ₃ 4 NO ₂ 8.46 x 10 ²² 6.022 x 10 ² 1 mole 1 mole 1 mole 1 mole | 7 O ₂ 6 H ₂ O molecules O molecules 17.04 g 46.01 g 18.02 g 32.00 g 23.7 g NH ₃ | ## **#LIVEWORKSHEETS**