Writing Equations of Parallel and Perpendicular Lines

Name :

Class :

Parallel to $y = -5x + 2$ and pa	asses
through point $(1, -4)$	

$$x_1 = \square$$
 $y_1 = \square$ $m_1 = \square$

$$y = mx + b$$

$$y = mx + b$$

Parallel to y = -x - 5 and passes through point (1, -3)

$$x_1 =$$
 $y_1 =$ $m_1 =$

y = mx + b

$$y = mx + b$$

$$y =$$
 (write the answer without spacing)

Perpendicular to $y = \frac{1}{3}x + 3$ and passes through point (2, -4)

(write the answer without spacing)

$$x_1 =$$
 $y_1 =$ $m_1 =$

$$y = mx + b$$

Perpendicular to $y = -\frac{1}{2}x$ and passes through point (4,3)

$$x_1 = \boxed{\qquad} y_1 = \boxed{\qquad} m_1 = \boxed{\qquad}$$
$$y = mx + b$$

y = mx + b

$$y =$$
 (write the answer without spacing)

y = mx + b

$$y =$$
 (write the answer without spacing)

Writing Equations of Parallel and Perpendicular Lines

Parallel to $y = \frac{3}{4}x - 3$ and passes through point (-4, -5)

$$x_1 =$$
 $y_1 =$ $m_1 =$

$$y = mx + b$$

$$y = mx + b$$

$$y =$$
 (write the answer without spacing)

Parallel to $y = -\frac{1}{5}x - 2$ and passes through point (5,3)

$$x_1 =$$
 $y_1 =$ $m_1 =$

$$y = mx + b$$

$$y = mx + b$$

$$y =$$
 (write the answer without spacing)

Perpendicular to y = 5x - 3 and passes through point (-5,5)

$$x_1 =$$
 $y_1 =$ $m_1 =$

$$y = mx + b$$

Perpendicular to y = 2x - 5 and passes through point (6,7)

$$x_1 =$$
 $y_1 =$ $m_1 =$

$$y = mx + b$$

y = mx + b

$$y = \begin{bmatrix} \\ \\ \text{(write the answer without spacing)} \end{bmatrix}$$

y = mx + b

$$y =$$
 (write the answer without spacing)