

Name/Nombre: _____ Date/Fecha: _____

ECTG

Adding fractions

- * Rule 1: When **adding** two fractions with Same denominator, then

- ❖ Step 1: Add _____.
- ❖ Step 2: Keep the _____.
- ❖ Step 3: _____ the answer in simplest form if possible.

Example: Solve $\frac{3}{5} + \frac{1}{5}$.

$$\begin{array}{r} \boxed{} \\ \hline \boxed{} \end{array}$$

- * Rule 2: When **adding** two fractions ($\frac{N_1}{D_1}$ and $\frac{N_2}{D_2}$) with different denominators, then

❖ Step 1: Multiply D_2 to both N_1 and D_1 to get _____.

Multiply D_1 to both N_2 and D_2 to get _____.

❖ Step 2: ADD the _____ numerators and KEEP the _____.

❖ Step 3: _____ the answer in simplest form if possible.

Example: Solve $\frac{3}{4} + \frac{5}{14}$.

$$\begin{array}{r} \boxed{} \\ \hline \boxed{} \end{array}$$

Name/Nombre: _____ Date/Fecha: _____

FCTG

DO NOW!

1. **Same denominator.** Solve each problem. Write the answer in mixed numbers and in simplest form (if possible).

$$(1) \frac{2}{5} + \frac{2}{5} \quad \frac{\square}{\square}$$

$$(2) \frac{1}{3} + \frac{2}{3} \quad \frac{\square}{\square} \quad \square$$

$$(3) \frac{2}{12} + \frac{3}{12} \quad \frac{\square}{\square}$$

$$(4) \frac{4}{8} + \frac{1}{8} \quad \frac{\square}{\square}$$

$$(5) \frac{6}{12} + \frac{5}{12} \quad \frac{\square}{\square}$$

$$(6) \frac{3}{4} + \frac{3}{4} \quad \frac{\square}{\square} \quad \square - \frac{\square}{\square}$$

$$(7) \frac{2}{10} + \frac{9}{10} \quad \frac{\square}{\square} \quad \square - \frac{\square}{\square}$$

$$(8) \frac{9}{6} + \frac{7}{6} \quad \frac{\square}{\square} \quad \square - \frac{\square}{\square}$$

$$(9) 1\frac{2}{10} + 2\frac{14}{10} \quad \square - \frac{\square}{\square}$$

2. **Different denominators.** Solve each problem. Write the answer in mixed numbers and in simplest form (if possible).

$$(1) \frac{3}{6} + \frac{3}{8} \quad \frac{\square}{\square} \quad \square - \frac{\square}{\square}$$

$$(2) \frac{10}{12} + \frac{1}{2} \quad \frac{\square}{\square} \quad \square - \frac{\square}{\square}$$

$$(3) \frac{4}{5} + \frac{5}{12} \quad \frac{\square}{\square} \quad \square - \frac{\square}{\square}$$

$$(4) \frac{5}{6} + \frac{6}{12} \quad \frac{\square}{\square} \quad \square - \frac{\square}{\square}$$

$$(5) \frac{1}{3} + \frac{2}{6} \quad \frac{\square}{\square} \quad \square - \frac{\square}{\square}$$

$$(6) \frac{7}{8} + \frac{8}{10} \quad \frac{\square}{\square} \quad \square - \frac{\square}{\square}$$

$$(7) \frac{7}{15} + \frac{3}{12} \quad \frac{\square}{\square} \quad \square - \frac{\square}{\square}$$

$$(8) \frac{9}{4} + \frac{7}{3} \quad \frac{\square}{\square} \quad \square - \frac{\square}{\square}$$

$$(9) 1\frac{3}{4} + 3\frac{5}{8} \quad \frac{\square}{\square} \quad \square - \frac{\square}{\square}$$