Parte 4. Utiliza el criterio de la primera derivada (escribe el número con dos decimales)

$$f(x) = -5x^3 - 3x^2 + 7x - 4$$

Paso 1.
$$f'(x) = -15x^2 - 6x + 7$$

Paso 2. Puntos críticos

$$x = \frac{-() \pm \sqrt{()^2 - 4() ()}}{2()}$$

Resolviendo se obtiene

$$x = \frac{\pm \sqrt{+}}{x}$$

$$x = \frac{\pm \sqrt{-}}{x}$$

$$x = \frac{\pm \sqrt{-}}{x}$$

Finalmente, los puntos (escribe el número con dos decimales)

$$x_1 = \frac{+}{-} = \frac{-}{-} = \frac{-}{-}$$

Paso 3. Completa la tabla:

	El valor de la derivada es un número POSITIVA ó NEGATIVA	Selecciona CRECE ó DECRECE
(−∞,)		
<i>x</i> =	Punto es	
(,)		
<i>x</i> =	Punto es	÷.
(,∞)		

Paso 4. Obtener los puntos máximos y mínimos (escribe el número con dos decimales)

La coordenada del punto máximo: (,)
La coordenada del punto mínimo: (,)

