| Name: | Date: | |---|---| | Program, Year & Section: | Score: | | | | | Workshe
Analytical Vector | | | Refer to the following vectors. | | | $\overrightarrow{A} = 75\overline{0}$ Newtons, 15.0° W of N
$\overrightarrow{B} = 70\overline{0}$ Newtons, E | = 850 Newtons, 60.0° S of E
D = 525 Newtons, E | | A. Which of the following is the correct | approximation of the given vectors? | | A B C | D | | 1 2 | 3 4 | | θ θ | θ θ | | 5 6
 | 7 8 | | $\frac{1}{\theta}$ | 9 | | 9 10B. Find the resultant of vectors B and D. | 11 12 | | R ₁ = Newtons | | | R ₁ = Newtons (magnitude | de) | | (direction |) | | C. Find the resultant of vectors B and (-I | D). Newtons | | R ₁ = Newtons (magnitude | | (direction) D. Find the resultant of vectors A, B, C and D. **Note**: **Round off all number answers to 3 significant digits**. Vectors lying exactly on an axis (e.g., x or y) has a single component (along that axis only). | Vector | x-component | y-component | |--------|--|--| | Α | A _x = A θ | Α _y = Α θ | | | = (750 Newtons) 15.0 ° | = (750 Newtons) 15.0 ° | | | = Newtons (mag.) | = Newtons (mag.) | | | (dir.) | (dir.) | | В | B _x = Newtons (mag.) | B _y = Newtons (mag.) | | | (dir.) | (dir.) | | С | C _x = C θ | C _x = C θ | | | = (850 Newtons) 60.0 ° | = (850 Newtons) 60.0 ° | | | = Newtons (mag.) | = Newtons (mag.) | | | (dir.) | (dir.) | | D | D _x = Newtons (mag.) | D _y = Newtons (mag.) | | | (dir.) | (dir.) | | Σ | $\sum x = A_x + B_x + C_x + D_x$ | $\sum y = A_Y + B_Y + C_Y + D_Y$ | | | = Newtons (mag.) | = Newtons (mag.) | | | (dir.) | (dir.) | E. Which of the following is the correct approximation of the R, $\sum x$ and $\sum y$ vectors? answer ____ | magnitude | direction | |---|--| | $R = \sqrt{(\sum x)^2 + (\sum y)^2}$ $R = \sqrt{(\underbrace{Newtons})^2 + (\underbrace{Newtons})^2}$ | $\theta = \arctan \frac{\sum y}{\sum x}$ | | R = Newtons (magnitude) = 0 (complete direction) | $\theta = \arctan \frac{Newtons}{Newtons}$ | | | θ =o |