

Name: _____

Date: _____

Program, Year & Section: _____

Score: _____

Worksheet 6

Analytical Vector Addition

Refer to the following vectors.

$\vec{A} = 750$ Newtons, 15.0° W of N
 $\vec{B} = 700$ Newtons, E

$\vec{C} = 850$ Newtons, 60.0° S of E
 $\vec{D} = 525$ Newtons, E

A. Which of the following is the correct approximation of the given vectors?

A _____

B _____

C _____

D _____

5

6

7

8

9

10

11

12

B. Find the resultant of vectors B and D.

$R_1 =$ _____ Newtons _____ Newtons

$R_1 =$ _____ Newtons (magnitude)
_____ (direction)

C. Find the resultant of vectors B and (-D).

$R_1 =$ _____ Newtons _____ Newtons

$R_1 =$ _____ Newtons (magnitude)
_____ (direction)

D. Find the resultant of vectors **A**, **B**, **C** and **D**.

Note: Round off all number answers to 3 significant digits. Vectors lying exactly on an axis (e.g., x or y) has a single component (along that axis only).

Vector	x-component	y-component
A	$A_x = A \quad \theta$ $= (750 \text{ Newtons}) \quad 15.0^\circ$ $= \quad \text{Newtons (mag.)}$ $\quad \quad \quad \text{(dir.)}$	$A_y = A \quad \theta$ $= (750 \text{ Newtons}) \quad 15.0^\circ$ $= \quad \text{Newtons (mag.)}$ $\quad \quad \quad \text{(dir.)}$
B	$B_x = \quad \text{Newtons (mag.)}$ $\quad \quad \quad \text{(dir.)}$	$B_y = \quad \text{Newtons (mag.)}$ $\quad \quad \quad \text{(dir.)}$
C	$C_x = C \quad \theta$ $= (850 \text{ Newtons}) \quad 60.0^\circ$ $= \quad \text{Newtons (mag.)}$ $\quad \quad \quad \text{(dir.)}$	$C_y = C \quad \theta$ $= (850 \text{ Newtons}) \quad 60.0^\circ$ $= \quad \text{Newtons (mag.)}$ $\quad \quad \quad \text{(dir.)}$
D	$D_x = \quad \text{Newtons (mag.)}$ $\quad \quad \quad \text{(dir.)}$	$D_y = \quad \text{Newtons (mag.)}$ $\quad \quad \quad \text{(dir.)}$
Σ	$\Sigma x = A_x + B_x + C_x + D_x$ $= \quad \text{Newtons (mag.)}$ $\quad \quad \quad \text{(dir.)}$	$\Sigma y = A_y + B_y + C_y + D_y$ $= \quad \text{Newtons (mag.)}$ $\quad \quad \quad \text{(dir.)}$

E. Which of the following is the correct approximation of the **R**, Σx and Σy vectors?

answer _____

magnitude	direction
$R = \sqrt{(\sum x)^2 + (\sum y)^2}$	$\theta = \text{arc tan } \frac{\sum y}{\sum x}$
$R = \sqrt{(\text{_____ Newtons})^2 + (\text{_____ Newtons})^2}$	
$R = \text{_____ Newtons}$ (magnitude) = _____° _____ (complete direction)	$\theta = \text{arc tan } \frac{\text{_____ Newtons}}{\text{_____ Newtons}}$
	$\theta = \text{_____}^{\circ}$