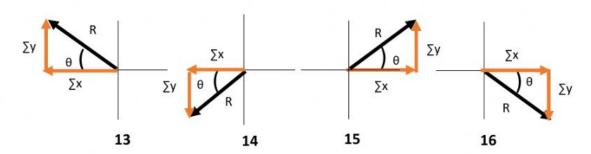
Name:	Date:
Program, Year & Section:	Score:
Workshe Analytical Vector	
Refer to the following vectors.	
$\overrightarrow{A} = 75\overline{0}$ Newtons, 15.0° W of N $\overrightarrow{B} = 70\overline{0}$ Newtons, E	= 850 Newtons, 60.0° S of E D = 525 Newtons, E
A. Which of the following is the correct	approximation of the given vectors?
A B C	D
1 2	3 4
θ θ	θ θ
5 6 	7 8
$\frac{1}{\theta}$	9
9 10B. Find the resultant of vectors B and D.	11 12
R ₁ = Newtons	
R ₁ = Newtons (magnitude	de)
(direction)
C. Find the resultant of vectors B and (-I	D). Newtons
R ₁ = Newtons (magnitude	

(direction)


D. Find the resultant of vectors A, B, C and D.

Note: **Round off all number answers to 3 significant digits**. Vectors lying exactly on an axis (e.g., x or y) has a single component (along that axis only).

Vector	x-component	y-component
Α	A _x = A θ	Α _y = Α θ
	= (750 Newtons) 15.0 °	= (750 Newtons) 15.0 °
	= Newtons (mag.)	= Newtons (mag.)
	(dir.)	(dir.)
В	B _x = Newtons (mag.)	B _y = Newtons (mag.)
	(dir.)	(dir.)
С	C _x = C θ	C _x = C θ
	= (850 Newtons) 60.0 °	= (850 Newtons) 60.0 °
	= Newtons (mag.)	= Newtons (mag.)
	(dir.)	(dir.)
D	D _x = Newtons (mag.)	D _y = Newtons (mag.)
	(dir.)	(dir.)
Σ	$\sum x = A_x + B_x + C_x + D_x$	$\sum y = A_Y + B_Y + C_Y + D_Y$
	= Newtons (mag.)	= Newtons (mag.)
	(dir.)	(dir.)

E. Which of the following is the correct approximation of the R, $\sum x$ and $\sum y$ vectors?

answer ____

magnitude	direction
$R = \sqrt{(\sum x)^2 + (\sum y)^2}$ $R = \sqrt{(\underbrace{Newtons})^2 + (\underbrace{Newtons})^2}$	$\theta = \arctan \frac{\sum y}{\sum x}$
R = Newtons (magnitude) = 0 (complete direction)	$\theta = \arctan \frac{Newtons}{Newtons}$
	θ =o