Group Members : 1.

2. _____ 3. _____

Date : _____

Worksheet of

Remainder Theorem

1. Divide $3x^3 + 10x^2 - x - 12$ by x + 3Solution.

v -			
	-	ijė.	
1 -	x	Е	=

<i>x</i> ³	x ²	x	С

Quotient:

Remainder:

2. Divide $2x^3 + 7x^2 - 53x - 28$ by 2x + 1Solution.

r	=
~	

x ³	x ²	x	С

Quotient:

Remainder:

3. Divide $2x^4 + 5x^3 - x + 8$ by $x^2 + x - 2$

Divisor $x^2 + x - 2 = (x + a)(x + b)$ *factorization

$$x^2 + x - 2 = (x \qquad)(x$$

)

Using Synthetics Division

Step 1 : polynomials divided by (x + a) = (x + a)

x	=

		-		4
x^4	x^3	x^2	x	С

Quotient $Q_1(x) =$

Remainder $R_1 =$

Step 2 : Quotient $Q_1(x) =$

divided by (x + b) = (x

)

Using Synthetics Division

polynomials divided by (x

	<i>x</i> ³	x ²	x	С
x =				

Quotient $Q_2(x) =$

Remainder R_2 =

Based on the step 1 and step 2 we obtain that

The quotient is $Q_2(x) =$

The remainder is $(x + a)R_2 + R_1 =$

4. Divide $4x^4 - 7x^2 + x + 2$ by $2x^2 - x + 3$

Solution

Divisor
$$2x^2 - x + 3 = (x + k)(ax + b)$$
 *factorization

$$2x^2 - x + 3 = (x)$$
)(...x)

Using Synthetics Division

Step 1 : polynomials divided by
$$(x + k) = (x + k)$$

$$x = \begin{array}{|c|c|c|c|c|c|c|c|} \hline x^4 & x^3 & x^2 & x & c \\ \hline \end{array}$$

Quotient $Q_1(x) =$

Remainder $R_1 =$

Step 2 : Quotient $Q_1(x) =$

divided by (ax + b) = (...x)

Using Synthetics Division

polynomials divided by (...x)

x =

x^3	x^2	x	С

Quotient $Q_2(x) =$

Remainder R_2 =

Based on the step 1 and step 2 we obtain that The quotient is $Q_2(x) =$

The remainder is $(x + k)R_2 + R_1 =$

5. When polynomial P(x) divided by (x-1) and (x+2) the remainders are 8 and -1 respectively. Find the remainder when P(x) is divided by (x-1)(x+2).

Given:

- P(x) divided by (x), the remainder is ...
- P(x) divided by (x), the remainder is ...

Question: the remainder of P(x) is divided by (x-1)(x+2).

Solution

Remember:

$$P(x) = (x - a)Q(x) + R$$

$$P(x) = (x - a)(x - b)Q(x) + R(x)$$

$$R(x) = ax + b$$