Remainder and Factor Theorems

Group	Members : 1	
	2	
	3	
Class	:	
Date	:	

Instruction. Read and understand the questions carefully.

Case 1

The number of international travelers to the United States since 1986 can be modelled by the equation $T(x) = 0.02x^3 - 0.6x^2 + 6x + 25.9$, where x is the number of years since 1986 and T(x) is the number of travelers in 2006, you can evaluate the function for x = 20.

Solution				
Given:				
	7.1			
Find :				
Alternative solution:				

Case 2

When a certain type of plastic is cut into sections, the length of each section determines its strength. The function $P(x) = x^4 - 14x^3 + 69x^2 - 140x + 100$ can describe the relative strength of a section of length x feet. Sections of plastics x feet long, where P(x) = 0, are extremely week. After testing the plastic, engineers discovered that section 5 feet long were extremely weak.

- a. Show that x 5 is factor of the polynomial function
- b. Are the other lengths of plastic that are extremely week? Explain your reasoning.

Solution	
Given:	
Find:	
Alternative solution:	

Case 3:					
	so that the re	emainder is 3 fr	om dividend x^3	$+4x^2+x+k$	and divisor
x + 2. Solution.					
	Question	source:http://teache	rwee.weebly.com/uplo	nds/8/3/8/0/8380	923/chap07.pdf
Please check th				nds/8/3/8/0/8380	923/chap07.pdf
Please check th				nds/8/3/8/0/8380	923/chapO7.pdf
Please check th				nds/8/3/8/0/8380	923/chapO7.pdf
Please check th				nds/8/3/8/0/8380	923/chapO7.pdf
Please check th				nds/8/3/8/0/8380	923/chapO7.pdf
Please check th				nds/8/3/8/0/8380	923/chapO7.pdf
Please check th				nds/8/3/8/0/8380	923/chapO7.pdf
Please check th			problem	nds/8/3/8/0/8380	923/chapO7.pdf
Please check th	is video to tal	ke clue of each p	problem		923/chapO7.pdf
Please check th	is video to tal	ke clue of each p	problem		923/chapO7.pdf