

The following statements describe factors that affect the rate of chemical reaction. Use the word bank below to complete the statements

Catalyst	Surface	Concentration	Energy
Effective	Unchanged	Collisions	Frequency
Collide	Activation	Temperature	Area

1. T _____ : this affects the energy of the particles and how quickly they C _____. Increasing the temperature of a system can lead to an increase in collision rate. It also affects the F _____ with which the particles collide and how E _____ the collisions are. The energy required for any reaction to take place is called the A _____ energy for that reaction.
2. C _____ : this is a measure of how crowded the particles are in a solution and the frequencies of collision. It changes the frequency of collision.
3. S _____ A _____ : this is a measure of how much solid is exposed to reaction and therefore how many C _____ take place. It changes the frequency of collision.
4. The presence of a C _____ : these speed up a chemical reaction but is U _____ chemically. They work by lowering the activation E _____ for the reaction.