Stoichiometry: Mass - Mole Worksheet

Solve the following stoichiometry problems and type in the correct answer with units. (for example: 3.45 mol or 4.62 g) Round the masses from the periodic table to the nearest whole number. Round all answers to 2 decimal places.

1.	Based on the	following chemical equation	please answer the	e following questions
----	--------------	-----------------------------	-------------------	-----------------------

Fe (SO₄)₃ + 6 NaCl
$$\rightarrow$$
 2 FeCl₃ + 3 Na₂SO₄

a. Calculate the amount of moles of NaCl needed to produce 75 g of FeCl₃.

Answer:	g Fe C/3	1 mol Fec/3	mol Na CI	
		g Feclz	mol Fellz	- =

b. Calculate the amount of $Fe_2(SO_4)_3$ in grams produce 215 g Na_2SO_4 .

Answer:	g Naz Soy	1 mol Nazsoy	Mol Fez (Say) =	9 Fez (504)z
		g Naz Soy	Mol Nazsoy	

c. Calculate the amount in grams of FeCl₃ produced with 95g of Fe(SO₄)₃.

Answer:	g Fe (504) 3 mol Fe (504) 3	mol Fells	9 Fectz
	gfe(404)3		1 molfellz

d. Calculate the amount of moles of $Fe_2(SO_4)_3$ needed to react with 123.5 g of NaCl.

2. How many moles of CaCO₃ can be produced if we make 12.3 g of Ca(HCO₃)₂ reacts with CaCO₃?

$$Ca(HCO_3) + Ca(OH)_2 \rightarrow 2 CaCO_3 + 2 H_2O$$

Answer:	g (a (HCO3)2	1 mol (a (HCO3)2	mol Ca Coz
		g Cal(HCOs)z	molCa(HCOz)z