= 7 7 132	areas and a second a second and	007.19 990	
Density = <u>Mass</u> Volume	Mass = Density x Volume	Volume = Mass Density	

Problems:

_____ cm³

1.	A block of wood measures $3\text{cm} \times 6\text{cm} \times 2\text{cm}$ and has a mass of 72g. Calculate the density of this object.
	g/cm ³
2.	Calculate the mass of an object that has a volume of 12 cm ³ and a density of 3.2 g/cm ³ .
	g
3.	Calculate the volume of an object that has a mass of 5.6 g and a density of 10 g/cm ³ .
	cm ³
4.	Calculate the density of an object that has a mass of 44.5g and displaces $5\ \mathrm{cm^3}$ volume of water.
	g/cm ³

5. The density of a solid is 8 g/cm³. If the mass of the object is 105g, determine the volume.

6.	The volume change in a graduated cylinder is 13 cm ³ , when you place an irregular shaped solid inside. The density of the solid is 1.25g/cm ³ . What is the mass of the solid?	
	g	
7.	A sample of platinum occupying a volume of 2.5 cm ³ has a mass of 1.28g. Calculate the	
	density of platinum.	
	g/cm ³	
8.	You have a graduated cylinder with 37 cm³ of water in it. You add 250g of lead weights, and the volume of water rises to 42 cm³. What is the density of the lead?	
	Volume: cm ³	
	Answer: g/cm ³	

