Name: Class: Experiment 1: Simple Harmonic Motion Read over the lab manual and then answer the following question. a) State the objective of the experiment. To determine the, g due to gravity using a simple pendulum and to investigate the effect of amplitude oscillation to the of g obtained from the experiment. b) Identify the variables of the experiment. Manipulated variable Responding variable Constant variable c) Theory: An oscillation of a simple pendulum is a simple harmonic motion if: The mass of the spherical bob is a b) The mass of the string is c) of the oscillation is small (...... 10°). According to the theory of SHM, the period of oscillation of a simple pendulum, T is given as: $T = 2\pi \sqrt{\frac{l}{g}}$ $T^2 = \frac{4\pi^2 l}{q}$ Procedures & Data Analysis: d) To determine the acceleration g due to gravity using a simple pendulum. The pendulum should be released at less than from the plane. Then, measure the time for complete oscillations.

How to calculate the period of oscillation, T of the pendulum?

 $T = \frac{Average \ time \ for \ 20 \ complete \ oscillations}{20 \ complete}$

1

- iv) How do you determine the acceleration, g due to gravity from the graph?

The gradient of the graph, m is equal to $\frac{4\pi^2}{}$. Hence, $g = \frac{4\pi^2}{}$.

To investigate the effect of large amplitude oscillation.

- i) Fixed the length of the pendulum at cm. The pendulum should be released about° from the vertical and measure the time for complete oscillations.
- ii) How do you calculate the acceleration, g due to gravity for this part of the experiment?Using equation and the value of l and T from step (f) of the experiment procedures.
- iii) Between the values of g obtained from procedure (e) and procedure (f), which one do you think will be closer with the standard value of g?

The value of g obtained from procedure (e).

The value of g obtained from procedure (e).

