Question 1

The Diagram 4 below show vegetable farm of chilies and tomatoes in rectangle form JKLM. Given that JP = KQ = X m. There are iron fences at the whole area farm.

(a) Evaluate an expression for farm area, L m2, in term of x

Calculation, L = = = Answer, =

(b) Given that area of the farm in rectangles is $460\ m^2$. Find the value of x.

 $= \begin{bmatrix} 460 \\ = 0 \end{bmatrix}$ $= \begin{bmatrix} 0 \\ \end{bmatrix}$ $= \begin{bmatrix} 0 \\ \end{bmatrix}$ $Answer, X = \begin{bmatrix} 0 \\ \end{bmatrix}$

(c) Safwan wants to build a fence to separate the area of chili vegetables with tomatoes at point P to point Q. If the price of the fence is RM50 per meter and Safwan has a budget of RM 1000. State whether Safwan has a sufficient budget to build the fence and give the total cost.

C =	$\sqrt{}$
=	
=	
Answer, =	

Question 2

The Graph 4 below shows indirect weighted graph.

(a) Complete Table 4 below:

Vertex Pair	Weight		
(P, Q)	10		
(P, S)			
(P, U)			
(Q, R)			
(Q, S)			
(U, T)			
(S, T)			

(b) (i) List **THREE** routes option from point U to R instead of the route mentioned.

U->P->Q->R

=		

(ii) State the shortest distance route from point U to R					
Answer,	=				

(c) If a line is drawn between point P to point T, and PUT forms a right-angled triangle with an angle of PUT is 90° . Find the length of point P to point T.

C =	$\sqrt{}$		_
=	$\sqrt{}$		_
=	$\sqrt{}$		_
Answer, =			