

Photoelectric effect worksheet 4

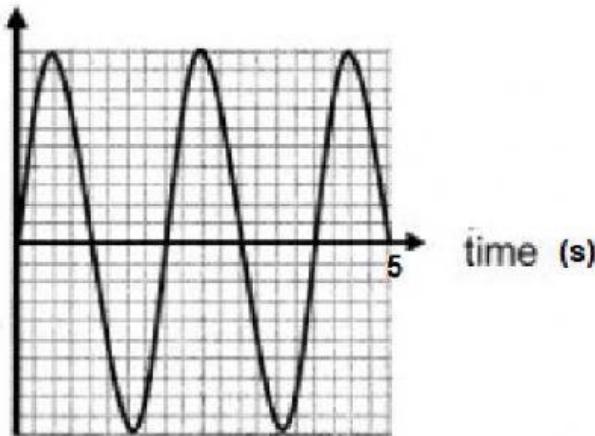
15. The energy needed to free an electron from potassium is 5.67×10^{-18} J.

a. What is the work function of potassium?

$$= \underline{\hspace{2cm}} \times 10 \underline{\hspace{2cm}}$$

b. What is the threshold frequency of potassium?

$$= \underline{\hspace{2cm}} \times 10 \underline{\hspace{2cm}}$$

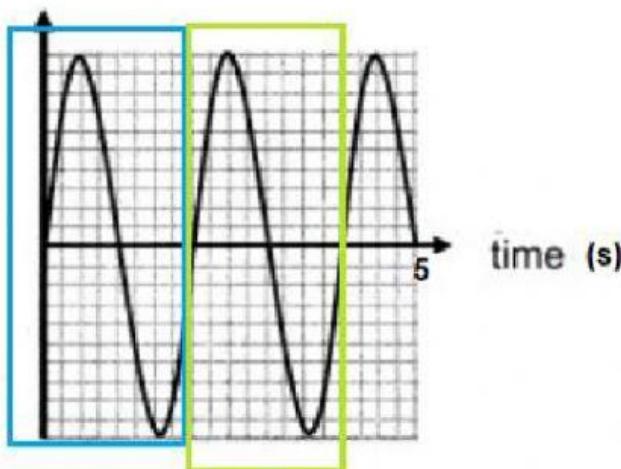

c. Will an electron be emitted when light of wavelength 200 nm falls on it? If so what will its kinetic energy be when it leaves the surface of the metal?

$$= \underline{\hspace{2cm}} \times 10 \underline{\hspace{2cm}}$$

Yes No

16. Use this question as an example

The following shows the waveform of a light wave.


Calculate the energy of this light wave

In this case the frequency needs to be calculated first using the gr 10 period formula

Notice also that there are 2,5 waves that form in 5 seconds.

$$\text{Thus time to form one wave} = \frac{5 \text{ s}}{2,5 \text{ waves}} \\ = 2 \text{ s per 1 wave}$$

Thus T (how long it takes to make one wave) = 2s

$$f = \frac{1}{T} \\ = \frac{1}{2} \\ = 0,5 \text{ Hz} \text{ (how many waves made per second)}$$

$$E = h \cdot f \\ = 6,6,3 \times 10^{-34} (0,5) \\ = 3,32 \times 10^{-34} \text{ J}$$

Since light thus behaves like a wave in certain situations and like a particle under certain circumstances, it is known as **wave-particle duality**. Higher frequency radiation tends to behave more like particles and lower frequency like waves. Some people imagine a wave of particles to help them visualise it.

Homework:

Pg 379 Q2.4; 2.5

Pg 380 Q12

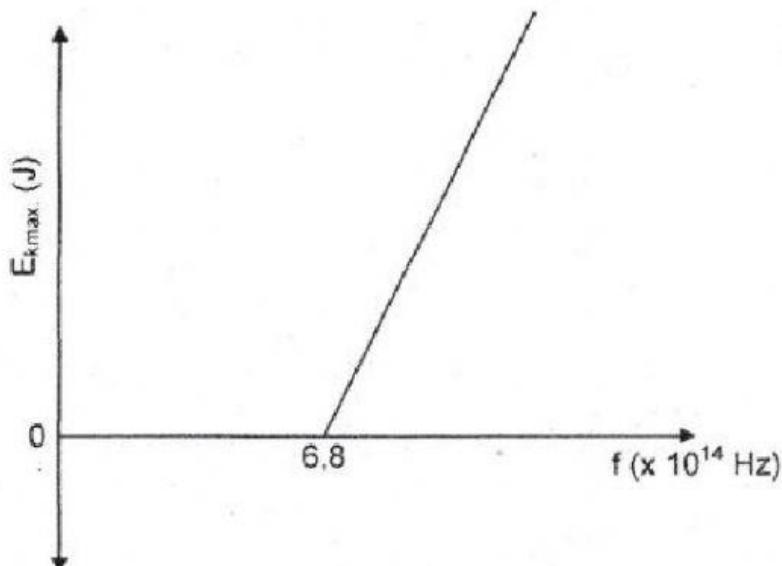
Pg 381 Q14; Q15

Pg 382 Q15 and 4.2

Pg 383 Q14

Pg 384 Q14

Pg 385 Q14


Pg 389 Q11

2 questions given below (that are not in your phys book)

The following 2 questions are not in your booklet

QUESTION 10 (Start on a new page.)

The graph below is obtained for an experiment on the photoelectric effect using different frequencies of light and a given metal plate.

The threshold frequency for the metal is 6.8×10^{14} Hz.

10.1 Define the term *threshold frequency*. (2)

In the experiment, the brightness of the light incident on the metal surface is increased.

10.2 State how this change will influence the speed of the photoelectrons emitted.

Choose from INCREASES, DECREASES or REMAINS UNCHANGED. (1)

10.3 Show by means of a calculation whether the photoelectric effect will be OBSERVED or NOT OBSERVED, if monochromatic light with a wavelength of 6×10^{-7} m is used in this experiment. (5)

One of the radiations used in this experiment has a frequency of 7.8×10^{14} Hz.

10.4 Calculate the maximum speed of an ejected photoelectron. (5)
[13]

QUESTION 11 (Start on a new page.)

In an experiment to demonstrate the photoelectric effect, light of different wavelengths was shone onto a metal surface of a photoelectric cell. The maximum kinetic energy of the emitted electrons was determined for the various wavelengths and recorded in the table below.

INVERSE OF WAVELENGTH $\frac{1}{\lambda} (\times 10^6 \text{ m}^{-1})$	MAXIMUM KINETIC ENERGY $E_{k(\text{max})} (\times 10^{-19} \text{ J})$
5,00	6,60
3,30	3,30
2,50	1,70
2,00	0,70

11.1 What is meant by the term *photoelectric effect*? (2)

11.2 Draw a graph of $E_{k(\text{max})}$ (y-axis) versus $\frac{1}{\lambda}$ (x-axis) ON THE ATTACHED ANSWER SHEET. (3)

11.3 USE THE GRAPH to determine:

11.3.1 The threshold frequency of the metal in the photoelectric cell (4)

11.3.2 Planck's constant (4)

[13]