

After we've gathered our information, we must ⁽¹⁾ it! We need to look for ⁽²⁾, most commonly those of ⁽³⁾ and consequences. This kind of information helps us to predict and ⁽⁴⁾ problems that could affect the world we live in.

But we don't keep all this information ⁽⁵⁾. We then need to ⁽⁶⁾ our findings so that other people can access it and be ⁽⁷⁾ by it. And one way in which this information can be published is in the form of maps. You'll all have used one at some ⁽⁸⁾ of your life already. Let's consider the benefits of maps from a geographer's perspective.

Maps can be folded and put in a pocket and can provide a great store of ⁽⁹⁾ when they're collected into an atlas. They can ⁽¹⁰⁾ the physical features of the entire planet if necessary, or, just a small part of it in much greater ⁽¹¹⁾. But there is a drawback. You can't exactly replicate something that is three-dimensional, like our planet, on a flat piece of paper, because paper has only two ⁽¹²⁾, and that means there'll always be a certain degree of ⁽¹³⁾ on a map. It can't be avoided.

We can also use aerial photographs . . . pictures taken by cameras at high ⁽¹⁴⁾ above the earth. These are great for showing all kinds of ⁽¹⁵⁾ features that are not easy to see from the ground. You can easily illustrate ⁽¹⁶⁾ of diseased trees or how much traffic is on the roads at a ⁽¹⁷⁾ time or information about deep sea beds, for example.