

CHEMBUDDY CHAPTER 6
6.2 EQUILIBRIUM CONSTANT

CHOOSE THE CORRECT ANSWER

NO	QUESTION	NO	QUESTION
1	<p>K_p for the reaction</p> $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) + \text{heat}$ <p>at 400°C is 1.64×10^{-4}. Calculate K_c.</p> <p>A. 0.30 C. 0.50 B. 0.40 D. 0.60</p>	2	<p>One mole of SO₃ was placed in a one litre reaction flask at a given temperature.</p> $2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$ <p>When the reaction equilibrium was established in the reaction, the vessel was found to contain 0.6 mole of SO₂. The value of equilibrium constant is</p> <p>A. 0.360 C. 0.450 B. 0.675 D. 0.540</p>
3	<p>The value of K_c at 700°C for the equilibrium</p> $SO_2(g) + NO_2(g) \rightleftharpoons SO_3(g) + NO(g)$ <p>is 9.01. Calculate the value of K_p at the same temperature.</p> <p>A. 10.0 C. 1.09 B. 0.19 D. 9.01</p>	4	<p>Calculate the value of K_p for the system</p> $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$ <p>At 525°C, with the equilibrium pressure of CO₂ at 0.22 atm.</p> <p>A. 3.36 C. 0.08 B. 0.22 D. 0.79</p>
5	<p>At a certain temperature, the equilibrium constant, K_c for the reaction</p> $2XY(g) \rightleftharpoons X_2(g) + Y_2(g)$ <p>is 25. What is the equilibrium constant, K_c for the reaction below?</p> $\frac{1}{2}X_2(g) + \frac{1}{2}Y_2(g) \rightleftharpoons XY(g)$ <p>A. 5 C. 12.5 B. 1/25 D. 1/5</p>	6	<p>Consider the following reaction at 400K.</p> $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ <p>At equilibrium, the following concentration were obtained:</p> <p>[PCl₅]=0.042M, [PCl₃]=1.25M, and [Cl₂]=0.4M</p> <p>What is the value of K_p for the reaction?</p> <p>A. 0.084 C. 11.90 B. 0.363 D. 390.6</p>

7	<p>At 25°C, the decomposition of N_2O_4 has a K_p value of 0.14.</p> $\text{N}_2\text{O}_4(\text{g}) \rightleftharpoons 2\text{NO}_2(\text{g})$ <p>If the partial pressure of NO at equilibrium is 0.15 atm, what is the partial pressure of N_2O_4 in the mixture?</p> <p>A. 0.0032 atm C. 0.16 atm B. 0.15 atm D. 1.07 atm</p>	8	<p>At 25°C, the value of K_p for the reaction</p> $2\text{NO}_2(\text{g}) \rightleftharpoons \text{N}_2\text{O}_4(\text{g})$ <p>is 7.13. At equilibrium, the partial pressure of NO_2 in a container is 0.15 atm. what is the partial pressure of N_2O_4 in the mixture?</p> <p>A. 7.13 C. 0.16 B. 0.15 D. 0.17</p>
9	<p>For the Haber process</p> $\text{N}_2(\text{g}) + 3\text{H}_2(\text{g}) \rightleftharpoons 2\text{NH}_3(\text{g})$ <p>$K_p = 1.45 \times 10^{-5}$ atm at 500°C</p> <p>In an equilibrium mixture of the three gasses, the partial pressure of H_2 is 0.928 atm and that of N_2 is 0.432 atm. What is the partial pressure of NH_3?</p> <p>A. 0.432 C. 1.45×10^{-5} B. 0.928 D. 2.24×10^{-3}</p>	10	<p>A mixture of gases is allowed to reach equilibrium at 700°C in a 12.0 L flask. At equilibrium, the mixture contains 0.208 M SO_2, 1.12×10^{-6} M O_2 and 0.725 M SO_3.</p> $2\text{SO}_2(\text{g}) + \text{O}_2(\text{g}) \rightleftharpoons 2\text{SO}_3(\text{g})$ <p>What is equilibrium constant, K_c?</p> <p>A. 9.22×10^{-8} C. 1.08×10^7 B. 3.11×10^6 D. 4.56×10^8</p>
11	<p>The value of K_c for the reaction:</p> $\text{H}_2(\text{g}) + \text{I}_2(\text{g}) \rightleftharpoons 2\text{HI}(\text{g})$ <p>is 50.2 at 450°C. If at the same temperature, $[\text{H}_2] = [\text{I}_2] = [\text{HI}] = 1.75 \times 10^{-3}$ M, which of the following statement is TRUE?</p> <p>A. The system is at equilibrium. B. HI concentration increases when the system re-establishes equilibrium. C. Concentration H_2 and I_2 increase as the system re-establishes equilibrium. D. Concentration HI and I_2 increase as the system re-establishes equilibrium.</p>	12	<p>Consider the following reaction</p> $2\text{NaHCO}_3(\text{s}) \rightleftharpoons \text{Na}_2\text{CO}_3(\text{s}) + \text{CO}_2(\text{g}) + \text{H}_2\text{O}(\text{g})$ <p>$K_p = 0.23$</p> <p>A sample of NaHCO_3 is placed in an evacuated flask and is allowed to achieve equilibrium at 373 K. What is the total gas pressure at equilibrium?</p> <p>A. 0.12 atm C. 0.48 atm B. 0.24 atm D. 0.96 atm</p>