

NAME _____

QUARTER 1

GRADE & SECTION _____

DATE _____

Activity: Rational Root / Rational Zero Theorem

RECALL

The Rational Zero Theorem

If $f(x) = a_n x^n + \dots + a_1 x + a_0$ has integer coefficients, then every rational zero of f has the following form:

$$\frac{p}{q} = \frac{\text{factor of constant term } a_0}{\text{factor of leading coefficient } a_n}$$

Drag the green card to the right if it is a possible rational zero of the given polynomial, if not, drag it to the left.

NOT possible Rational Zeros

1) $2x^3 - x^2 + 19x + 10$

± 1	± 2	± 3	± 4	± 5
± 10	$\pm \frac{1}{2}$	$\pm \frac{2}{5}$	$\pm \frac{5}{2}$	$\pm \frac{5}{3}$

POSSIBLE Rational Zeros

NOT possible Rational Zeros

2) $x^5 + 3x^4 - 18x^2 + 27$

± 1	± 2	± 3	± 4	± 5
± 6	± 9	± 27	$\pm \frac{1}{3}$	$\pm \frac{1}{9}$

POSSIBLE Rational Zeros

NOT possible Rational Zeros

3) $5x^3 - 23x^2 - 65x - 22$

± 1	± 2	± 3	± 4	± 5
± 10	± 11	± 12	± 22	$\pm \frac{1}{5}$
$\pm \frac{2}{5}$	$\pm \frac{11}{5}$	$\pm \frac{22}{5}$	$\pm \frac{5}{11}$	$\pm \frac{5}{22}$

POSSIBLE Rational Zeros

How many attempts? ____.
How well did you do?

Need help!

Just OK!

Splendid

I HAVE TO REMEMBER THAT...